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Prefacio

O propdsito deste livro € o de apresentar uma introducao aos conceitos fundamentais da éptica e a algumas
das suas aplicagdes. Com a sua publicagdo, pretende-se contribuir para uma maior divulgacio deste dominio no
espacgo de lingua portuguesa e tornar, possivelmente, mais facil o seu estudo por alunos de fisica ou de outros
cursos de ciéncias e de engenharia. Efectivamente, atendendo a que a area de influéncia da éptica tem vindo a
extravasar os limites da fisica e a alargar-se progressivamente a outras areas do saber, nomeadamente a quimica,
a biologia, a engenharia e a medicina, pensamos que este livro podera ser 1til como texto de referéncia, ndo s6 em
algumas disciplinas dos cursos de fisica, mas também em alguns programas de formacao desenvolvidos nestas
altimas areas. Podera também ser um instrumento ttil para profissionais com uma formacao de base diversa e
que desejem iniciar o estudo desta area.

A forma como se apresenta este texto corresponde aquela que, na opinido do autor, mais interessa aos
alunos, contribuindo para o sucesso no seu aproveitamento. De facto, o texto tem uma feicio eminentemente
tedrico-pratica: para cada um dos temas, apresenta-se primeiro o essencial da teoria, seguindo-se um conjunto de
problemas completamente resolvidos. O objectivo destes problemas - num total de cem - é o de proporcionar uma
melhor compreensao e um maior dominio da teoria apresentada antes. No final de cada capitulo sdo propostos
outros problemas, também em nimero de cem, que se destinam a ser resolvidos pelos proprios alunos. Alguns
destes problemas poderdo ser seleccionados para uma discussdo aprofundada no ambito das aulas tedrico-

praticas das unidades curriculares em causa.

Universidade de Aveiro, Marco de 2022
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Capitulo 1

A NATUREZA DA LUZ

Desde muito cedo os homens interrogaram-se sobre a natureza da luz e elaboraram diferentes teorias para
descrever os fendmenos 6pticos. De facto, torna-se importante compreender a verdadeira natureza da luz, dado
que ela representa um dos ingredientes basicos da vida sobre a Terra. Considere-se, por exemplo, a importancia
da luz solar para as plantas, que a convertem em energia quimica através do processo de fotossintese. Por outro
lado, a luz é o principal meio através do qual podemos transmitir e receber informacao a partir dos seres que nos
rodeiam ou que se encontram dispersos pelo Universo.

Neste capitulo comecaremos por descrever, de um modo sumario, algumas ocorréncias e ideias que se
foram sucedendo ao longo dos séculos sobre a natureza da luz. Apresentaremos a seguir o modelo baseado na
teoria electromagnética, que se revela capaz de descrever uma grande parte dos fendmenos 6pticos observados no

dia-a-dia.

1.1 Modelos para a luz — Uma
perspectiva historica

Varios filésofos da Grécia Antiga, entre os quais Pitagoras, Demécrito, Empédocles, Platao e Aristételes,
desenvolveram diversas teorias acerca da natureza da luz. A teoria de Aristételes, em particular, era muito
semelhante a teoria do éter que viria a ser desenvolvida no século XIX. Contudo, o trabalho sobre dptica mais
antigo de que se tem conhecimento € o livro Optics, escrito por Euclides (300 a.C.), no qual se descreve a propagacio
rectilinea da luz, assim como a lei da reflexao. Seguindo o ensinamento de Platao, Euclides supunha que os “raios”
luminosos tinham a sua origem nos olhos do observador e se dirigiam para os objectos contemplados.

Ainda no século I a.C., Hero de Alexandria defendeu que a luz, ao viajar entre dois pontos, segue sempre
o caminho mais curto. No caso de um meio homogéneo, esse caminho corresponde a uma trajectoria rectilinea.
Usando este principio, Hero conseguiu demonstrar geometricamente a lei da reflexdo. O principio do caminho
mais curto veio a revelar-se basicamente correcto, apesar de o seu autor admitir igualmente que os raios luminosos
provinham dos olhos do observador e que a velocidade de propagacao da luz era infinita.

A refraccao da luz foi estudada por Cleomedes (50 d. C.) e, mais tarde, por Claudio Ptolomeu (100-170), de
Alexandria, cujas observagoes ficaram registadas no seu livro Optics. Ptolomeu realizou uma série de medidas bastante
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rigorosas dos angulos de incidéncia () e de refraccao (6) para varios meios. A partir dessas medidas, chegou a uma
relagdo empirica entre os dois ngulos, dada por 6, = a6, - b8’ , onde a e b sdo constantes que dependem dos meios que
formam a interface. E interessante notar que, apesar desta expressdo ser valida apenas para angulos de incidéncia
bastante pequenos, ela permaneceu inalterada durante cerca de 1500 anos!

A queda do Império Romano do Ocidente, em 475 d. C., marca o inicio de um periodo durante o qual a
actividade cientifica na Europa praticamente estagnou. Entretanto, a expansao do islamismo fez deslocar o centro
da actividade intelectual para o mundo arabe. E neste contexto que surge, em Bagdad, a figura de Alhazen (965-
-1039), que escreveu uma coleccdo de sete livros sobre 6ptica. Entre outros assuntos, Alhazen elaborou a lei da
reflexao, estudou as caracteristicas dos espelhos esféricos e parabdlicos e descreveu em detalhe o funcionamento
do olho humano. Na sua concep¢o, os raios luminosos nao tinham origem no olho, mas nas fontes que
iluminavam os objectos, a partir dos quais a luz se dirigia para o olho. Alhazen defendeu igualmente que a luz se
propagava com uma velocidade finita, ainda que muito elevada, e que essa velocidade deveria ser inferior num

meio opticamente mais denso.

O trabalho de Alhazen foi traduzido para latim e acabou por ter uma grande influéncia nos estudos de
optica do Bispo Robert Grosseteste (1175-1253) e do matematico polaco Vitelo. Estes estudos foram continuados
por Roger Bacon (1215-1294), que tera sido o primeiro a propor o uso de lentes para melhorar a visdo e a combinar
varias lentes para formar um telesc6pio. Mais tarde, apareceu o contributo de Leonardo da Vinci (1452-1519), que
descreveu o funcionamento da chamada camera obscura. De notar, contudo, que este dispositivo havia sido ja
discutido, cerca de 500 anos antes, por Alhazen.

Usando um telescopio feito por si mesmo, Galileu Galilei (1564-1642) descobriu as luas de Japiter e muitas
outras maravilhas do espaco celeste. Apds ter verificado as descobertas de Galileu, Johannes Kepler (1571-1630)
publicou, em 1609, o seu livro Dioptrice, no qual se encontram sumariados muitos dos resultados obtidos até
entdo. Entre outros assuntos, este livro apresenta a teoria para as combinagoes de lentes e descreve o fenémeno
da refrac¢ao usando uma aproximacao de angulos pequenos.

A lei da refracg¢do acabou por ser definitivamente descoberta em 1621 por Willebrord Snell (1591-1626), em
Leyden. Contudo, o trabalho de Snell era, essencialmente, de natureza empirica e ndo foi publicado de imediato.
René Descartes (1596-1650), que desconhecia aparentemente o trabalho de Snell, publicou, em 1637, a obra La
Dioptrigue, apresentando pela primeira vez a lei da refrac¢do tal como hoje a conhecemos.

Pierre de Fermat (1601-1665) demonstrou em 1657 a lei da reflexdo com base no seu principio do tempo
minimo. Segundo este principio, que é uma evolu¢ao da ideia do caminho mais curto defendida por Hero, a luz
propaga-se de um ponto para outro seguindo um trajecto que minimiza o tempo de percurso, mesmo que para
tal ela tenha de desviar-se da recta que passa por esses pontos. Com base no mesmo principio, e introduzindo o
conceito de resisténcia optica do meio, Fermat obteve igualmente a lei da refraccao.

Tanto Descartes como Fermat admitiam que a luz era constituida por uma corrente de particulas. Contudo,
o principal arquitecto desta teoria corpuscular foi Isaac Newton (1642-1727), que explicou nessa base as principais
caracteristicas da luz observadas experimentalmente, nomeadamente as leis da reflexao e da refrac¢do. Em 1704
ele publicou o livro Opticks, que se tornou durante bastante tempo numa obra de referéncia para a descrigdo das
caracteristicas da luz. Nesta obra, Newton descreveu uma série de experiéncias relativas a refraccao e ao dominio
actualmente designado por interferéncia. Uma dessas experiéncias ilustrava o fendmeno da dispersdo da luz do
sol num prisma. Newton verificou que o fenémeno da cor era uma caracteristica intrinseca da luz e que a luz
branca proveniente do sol era o resultado da combinacao de raios de todas as cores. Esses raios eram entendidos
como correntes de particulas que se moveriam através de um meio omnipresente, o éter.

Em oposicao a teoria corpuscular, havia também quem defendesse, ja no século XVII, teorias ondulatdrias
para a luz. Entre os defensores destas teorias encontra-se Robert Hooke (1635-1703), que chegou a afrontar

directamente Newton na Royal Society of London. Entre outros trabalhos, Hooke descreveu os padrdes de
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interferéncia com varias cores que ocorrem em filmes dieléctricos delgados. Tendo por base a hipétese do meio
etéreo, propds uma analogia entre as ondas luminosas e as ondas que se formam na agua.

O fisico holandés, Christian Huygens (1629-1695) pode ser considerado o principal arquitecto do modelo
ondulatério para a luz, com base no qual explicou as leis da reflexdo e da refraccao. Esse modelo ondulatdrio foi
exposto na obra Traité de la Lumiére, publicada em 1690, na qual foi enunciado pela primeira vez o que viria a
ser conhecido por principio de Huygens: cada ponto de uma frente de onda primdria constitui uma fonte de ondas
esféricas elementares, a sobreposi¢do das quais permite obter a frente de onda primdria num instante posterior. Na

Fig. 1.1 ilustra-se a utilizacao do principio de Huygens para descrever a propagacao de uma onda esférica.

Figura 1.1 - Tlustracdo do principio de Huygens para uma onda esférica.

Por varias razdes, a teoria ondulatéria da luz acabou por ndo ter um grande acolhimento na comunidade
cientifica da época. Na realidade, todos os tipos de ondas entdo conhecidas (ondas sonoras, ondas na agua, etc.)
propagavam-se através de algum meio material, enquanto a luz vinda das estrelas, por exemplo, deveria chegar até
nés através do espaco vazio. Por outro lado, a descricao ondulatdria parecia inverosimil a muitos cientistas também
pela dificuldade em explicar a propagacao rectilinea da luz. Esses cientistas defendiam que, se a luz tivesse, de facto,
uma natureza ondulatéria, entao ela deveria espalhar-se em todas as direcgbes e ser mesmo capaz de contornar os
obstaculos. Este fenémeno — conhecido por difrac¢iao — nao é facilmente observado com a luz, devido ao seu pequeno
comprimento de onda.

De facto, Francesco Grimaldi (1618-1663) chegou a observar experimentalmente o fenémeno da difrac¢ao da
luz. Contudo, a grande reputacio de Newton na comunidade cientifica fez com que a teoria corpuscular acabasse por
prevalecer claramente sobre a teoria ondulatéria durante mais de um século. De entre os poucos cientistas do século
XVIII que aceitaram a teoria ondulatéria e rejeitaram a teoria corpuscular de Newton podem-se referir os nomes de
Leonard Euler (1707-1783) e de Benjamin Franklin (1706-1790).

A primeira demonstracio experimental da natureza ondulatéria da luz foi realizada, em 1801, por Thomas
Young (1773-1829). Young calculou aproximadamente o comprimento de onda da luz e introduziu o conceito de
interferéncia, que pode ser considerado como um principio de sobreposicdo linear de ondas. Combinando este
principio com a teoria de Huygens, Augustin Fresnel (1788-1827) estudou a difrac¢do da luz por varios objectos.
Nessa altura, pensava-se que a luz era constituida por ondas longitudinais. Foi o fenémeno da polarizacao que
levou Young a admitir que a luz era uma onda transversal.

Em 1850, Jean Foucault (1791-1868) demonstrou experimentalmente que a velocidade da luz nos liquidos
era menor do que no ar. Este facto constituiu uma vitéria importante para a teoria ondulatéria da luz, uma vez
que a teoria corpuscular previa um resultado oposto. Entretanto, sucederam-se outros desenvolvimentos que
levaram a aceitacdo generalizada da teoria ondulatoria.

O desenvolvimento mais importante no plano tedrico deveu-se ao trabalho de James Clerk Maxwell (1831-
-1879), que mostrou, em 1873, ser a luz um fenémeno ondulatério de natureza electromagnética. A sua teoria

previa que as ondas electromagnéticas se propagariam no espago com uma velocidade de cerca de 3 x 10® m/s,
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um resultado que era igual ao valor obtido experimentalmente para a velocidade da luz. O fisico alemao Heinrich
Hertz (1857-1894) acabaria por confirmar, em 1888, a teoria de Maxwell.

A tarefa seguinte consistiu em determinar as propriedades do meio que serviria de suporte as ondas
electromagnéticas e, em particular, a luz. A este respeito, cedo apareceram varias dificuldades, dado que o éter,
que havia sido postulado para o efeito, deveria apresentar algumas propriedades bastante estranhas. Por um
lado, ele teria de ser muito transmissivo, dado que os corpos celestes atravessa-lo-iam sem serem minimamente
afectados. Por outro, deveria apresentar forcas restauradoras bastante intensas, de modo a produzir frequéncias
extremamente elevadas (= 10" Hz).

Os esforcos tendentes a medir a velocidade da Terra relativamente ao éter culminaram, em 1881, na experiéncia
de Albert Michelson (1852-1931). Nessa experiéncia, Michelson ndo verificou qualquer influéncia do movimento da
Terra na propagacao da luz através do éter. De facto, para explicar, com base na teoria ondulatéria, o fenémeno da
aberracao estelar, conhecido ja desde James Bradley (1693-1762), tinha de se admitir um movimento relativo entre
a Terra e o éter. A solucio para estas dificuldades foi dada pelo fisico alemao Albert Einstein (1879-1955), quando
enunciou em 1905 o principio da relatividade restrita, que considerava desnecessaria a existéncia do dito éter.

Apesar da teoria classica do electromagnetismo, desenvolvida por Maxwell, ser capaz de descrever a maior
parte das caracteristicas da luz, ela nao conseguia explicar alguns resultados experimentais obtidos ja no final
do século XIX. Entre esses resultados encontrava-se o efeito_fotoeléctrico, descoberto por Hertz, que consiste na
ejeccao de electrdes por um metal cuja superficie é exposta a luz. As observacoes experimentais revelam que a
energia cinética dos electrdes emitidos pelo metal ndo depende da intensidade da luz, o que contraria as previsdes
baseadas na teoria ondulatdria. A explicacao deste fenémeno foi dada por Einstein, em 1905, que usou o conceito
de quantizacao desenvolvido por Max Planck (1858-1947) em 1900.

Segundo o modelo quantico, a energia de uma onda luminosa encontra-se distribuida por unidades,
chamadas fotdes. De acordo com a teoria de Einstein, a energia de um fotao é proporcional a frequéncia da onda

electromagnética:
E=hv (11)

onde % = 6.63 x 10 ** J.s é a chamada constante de Planck. E importante notar que esta teoria conjuga algumas
nogoes, tanto da teoria ondulatéria como da teoria corpuscular da luz. De facto, o efeito fotoeléctrico é o resultado
da transferéncia de energia entre um dado fotdo e um electrdo do metal. Ou seja, o electrido interage com um fotao
como se ele fosse uma particula. Contudo, este fotao apresenta algumas caracteristicas reminiscentes de uma
onda. Por exemplo, a sua energia é determinada pela frequéncia, que é uma grandeza tipicamente ondulatoria.
A teoria quantica desenvolveu-se rapidamente entre os anos 1925-1930 com a mecanica ondulatéria de
Erwin Schrodinger (1887-1961) e a mecanica matricial de Werner Heisenberg (1901-1976). A equivaléncia entre
as duas teorias foi demonstrada por John von Neumann (1903-1957). Como resultado dessa teoria, considera-se
hoje que qualquer particula exibe igualmente propriedades ondulatérias. De facto, segundo Louis de Broglie

(1892-1987), uma particula com momento linear p tem associado um comprimento de onda 4, dado por :

h
A= E (1.2)

A confirmacio experimental da hipé6tese sugerida por Louis de Broglie aconteceu durante os anos de 1927-
-1928 quando Clinton Davisson (1881-1958) e Lester Germer (1896-1971), nos EUA, e Sir George Thomson (1892-
-1975), em Inglaterra, observaram o fenémeno da difraccao com um feixe de electroes.

O facto de tanto os fotdes como os electrdes se comportarem como particulas ou como ondas parecia,
numa fase inicial, uma contradi¢do, dado que esses dois aspectos sdo aparentemente irreconciliaveis. Contudo, o
chamado principio da complementaridade, elaborado por Niels Bohr (1885-1962), pds em evidéncia que tanto os
fotdes como os electrdes ndo sdo nem particulas nem ondas, mas algo mais complexo que a ideia traduzida por

esses modelos.
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A mecanica quantica, juntamente com a teoria da relatividade, mostra que o momento, p, e a velocidade, v,

tanto das particulas materiais como dos fotoes, s2o dados pelas mesmas expressoes:

(1.3)

2
pc
V=—

7 (14)

enquanto que o comprimento de onda, 4, é dado, em ambos os casos, pela Eq. (1.2). Nas Eq.s (1.3) e (1.4), m é
a massa em repouso e E é a energia total da particula, dada pela soma da energia correspondente a massa em
repouso, mc?, e da sua energia cinética.

Uma diferenca essencial entre os electroes e os fotdes é que os tltimos nao tém massa em repouso. Deste

modo, as Eq.s (1.3) e (1.4) assumem um aspecto mais simples para este segundo tipo de particulas:

,-E (1.5)
C
— et - (1.6)
E

Verifica-se, assim, que enquanto as particulas com massa em repouso diferente de zero apresentam uma
velocidade inferior a ¢, particulas como os fotoes tém uma velocidade constante c. A energia de um fotdo nio é uma
funcao da sua velocidade, mas da sua frequéncia, como € indicado pela Eq. (1.1).

Uma outra diferenca significativa entre os electroes e os fotdes é que os primeiros obedecem a estatistica
de Fermi, enquanto os segundos obedecem a estatistica de Bose. A estatistica de Fermi nao permite a existéncia,
num dado sistema, de dois electroes no mesmo estado, enquanto a estatistica de Bose nao impde essa proibicao
aos fotoes. Deste modo, pode-se ter um grande nimero de fotdes exactamente com as mesmas caracteristicas, o

que faz com que um dado feixe de luz possa ser representado por uma onda electromagnética continua.

1.2 Teoria electromagnética para a luz

Como se referiu na seccdo anterior, a luz pode ser encarada como um fenémeno electromagnético,
sendo, por isso, descrita com base nos mesmos principios teéricos que governam todas as formas de radiac¢do
electromagnética. As frequéncias Opticas ocupam no espectro electromagnético uma banda relativamente
estreita, que se estende desde o infravermelho até ao ultravioleta. Devido ao seu curto comprimento de onda,
as técnicas usadas para gerar, transmitir e detectar ondas épticas diferem, geralmente, das utilizadas para as
ondas electromagnéticas de comprimento de onda superior. Contudo, a recente miniaturizacao dos componentes
6pticos fez com que estas diferencas se tornassem menos significativas.

A radiacao electromagnética propaga-se na forma de dois campos vectoriais ondulatérios mutuamente
acoplados: o campo eléctrico e o0 campo magnético. A teoria ondulatéria, na qual a luz é descrita através de
uma unica funco escalar da posicdo e do tempo (a funcio de onda), constitui uma aproximacgio da teoria
electromagnética, valida para ondas paraxiais dentro de certas condig¢oes. A 6ptica geométrica constitui, por sua

vez, uma aproximacao da 6ptica ondulatoria, sendo valida no caso em que o comprimento de onda é muito menor
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que as dimensoes dos componentes encontrados pela luz. Deste modo, a éptica electromagnética abarca a optica
ondulatéria, que, por sua vez, abarca a dptica geométrica. Na tltima secgdo deste capitulo mostra-se como a

Optica geométrica pode ser considerada, de facto, como um limite da dptica electromagnética.

1.2.1 Equacgoes de Maxwell

Na sua manifestacao ondulatdria, a luz comporta-se como uma onda electromagnética, ou seja, como uma
perturbacao envolvendo variagdes temporais e espaciais dos campos eléctrico e magnético acoplados. Deste modo,

as suas caracteristicas podem ser descritas a partir das equacoes de Maxwell, que se podem escrever na forma:

V.D=p .7)
V-B=0 (1.8)
VxE=-2F (1.9)
a
Vxi=7+ D (110
ot

onde E é o campo eléctrico, D é o deslocamento eléctrico, H é o campo magnético, B é a induciio magnética, J
é o vector densidade de corrente e p é a densidade de carga. O deslocamento eléctrico relaciona-se com o campo

eléctrico na forma:

D=¢E (1.11)

onde ¢ é a permitividade ou constante dieléctrica do meio. Por outro lado, o campo magnético relaciona-se com a

indu¢do magnética na forma:

B=uH (1.12)
onde u é a permeabilidade magnética. No caso do vazio, as constantes x e € assumem os valores:
W=, =4z x 107 Ho' (1.13)
-9
£=¢g,= &Fm’l (1.14)
36

AsEq.s(1.7)e(1.8) correspondem as leis de Gauss para a electricidade e para o magnetismo, respectivamente,
enquanto a Eq. (1.9) corresponde a lei de Faraday e a Eq. (1.10) corresponde a lei de Ampere, modificada por
Maxwell.

Ao escrever as Eq.s (1.7)-(1.10) considerou-se que o meio é uniforme e isotrépico. No caso desse meio estar
liberto de fontes (/=0 ¢ p = 0), os campos eléctrico e inducdo magnética aparecem com uma notavel simetria nessas

equacoes.
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1.2.2. Ondas electromagnéticas

Partindo das equacoes de Maxwell e considerando o caso de um meio liberto de fontes, mostra-se no

problema PR 1.1 que o campo eléctrico satisfaz a seguinte equacao de onda:
- 0% -
V2E-ue —E=0 (1.15)
ot?

De um modo semelhante, pode-se mostrar que o campo indugio magnética satisfaz a mesma equacao de onda:
~ 0% -
V2B-pue—B=0 (1.16)
ot?

Verifica-se das Eq. (1.15) e (1.16) que os campos eléctrico e magnético se propagam com a mesma velocidade, v,

dada por:
1

V:ﬁ

A velocidade da luz para o vazio foi calculada por Maxwell usando os valores medidos experimentalmente para
Hy e €, por Wilhelm Weber (1804-1891) e Rudolph Kohlrausch (1809-1858). Ele obteve entao um resultado que
estava em acordo com o valor obtido experimentalmente para a velocidade da luz por Fizeau, em 1849. Esta coinci-

(1.17)

déncia levou Maxwell a concluir que a luz deveria ser um fenémeno electromagnético. A velocidade da luz no vazio é:

v =c¢ =2.997924562 x 10°* m/s £1,1 m/s (1.18)

A razao entre a velocidade da luz no vazio, ¢, e a velocidade da luz num dado meio, v, define o indice de

refracgdo, n, desse meio:

n= c_ |He (1.19)
v\ Hoéo

Geralmente, as propriedades magnéticas do meio tém uma influéncia desprezavel na velocidade de propagagio
da onda, podendo-se considerar u = 1, . O indice de refrac¢ao do meio é, assim, basicamente determinado pela sua

permitividade ¢, a qual depende da frequéncia da onda electromagnética que nele se propaga.

As Eq.s (1.15) e (1.16) tém solucgbes na forma de ondas planas harménicas, dadas por:

F —Re {Eoei(a)t—lz .7+¢)} (1.20)
B =Re {éoei(wt—/;iwﬁ)} (1.21)

onde E, e B sdo vectores, representando a amplitude das oscilagdes, w é a frequéncia angular, k é o vector
de onda, que define a direccao de propagacio, e Re indica a parte real da expressdo dentro das chavetas. Nao
escreveremos a seguir, de modo explicito, o “Re”, entendendo-se, no entanto, que os campos fisicos sdo dados

sempre pela parte real dos campos complexos que aparecem nas equagoes.

Usando as equacdes de Maxwell e as Eq.s (1.20) e (1.21), mostra-se no problema PR 1.3 que os campos Ee

B sio perpendiculares entre si e ambos perpendiculares 4 direccio de propagacio, satisfazendo a relacio:

B :1(§XE) (1.22)
v
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onde § =k /k é ovector unitario na direc¢io de propagacio. A Eq. (1.22) condensa trés caracteristicas importantes

das ondas electromagnéticas:
) Bé perpendicular a E,
i) B estd em fase com E,

iii) as grandezas de B e de E relacionam-se na forma B = E/v.

Figura 1.2 - Propagacao de uma onda electromagnética plana.

A Fig. 1.2 representa esquematicamente a propagacao de uma electromagnética plana numa direc¢ao

indicada pelo vector de onda .

1.2.3. Densidade e fluxo de energia

A teoria electromagnética permite obter a seguinte expressao para a densidade de energia associada com

os campos eléctrico e magnético no vazio:

Uzl{EOE.EJrLE.E} (1.23)
2 Hy

Contudo, atendendo a que

5 E- Ll p E.E (1.24)
B-B:c—zE-Ezgo,uoE-E .

pode-se escrever:
- -2
U=gE-E=2z|E (1.25)
A densidade do fluxo de energia na direccao de propagacao é definida pelo chamado vector de Poynting:

§=L(E‘x§):l_fxl:[ (1.26)
Ho

A densidade de fluxo de energia numa direc¢éo arbitraria, indicada por um dado vector unitario #, é dada pelo

produto escalar - S .
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No caso de ondas planas que se propagam no vazio, mostra-se no problema PR 1.5 que a média temporal
da grandeza do vector de Poynting é dada por:
S EoC = |2
/= <‘S\> =& \ Eo\ (1.27)
2
onde Eo é o vector amplitude do campo eléctrico. A grandeza [ = <‘§ ‘> é conhecida por densidade de fluxo
radiante , ou intensidade, (W/m 2Yeé designada por emitdincia ou irradidncia, consoante esse fluxo se afasta ou

incide, respectivamente, numa dada superficie.

1.2.4. Formulas de Fresnel

Quando uma onda electromagnética incide na fronteira de separacao entre dois meios com indices de
refraccio diferentes, n, e n, , ela é, em geral, parcialmente reflectida e parcialmente transmitida. Mostra-se no

problema PR 1.8 que a relagdo entre o angulo de incidéncia, ,, e o angulo de reflexdo, g, , é dada por:

0,=0. (1.28)

Este resultado traduz a chamada lei da reflexdo. Mostra-se ainda no mesmo problema que a relacio entre

o angulo de incidéncia, 6;, e o angulo de transmissao, t9t , ¢ dada por

n sen6; = nysen6, (1.29)

Este resultado traduz a chamada lei da refracgdo ou lei de Snell.

Arazdo entre as amplitudes das ondas reflectida e incidente é conhecida por coeficiente de reflexdo, enquanto
a razio entre as amplitudes das ondas transmitida e incidente define o chamado coeficiente de transmissao. As
Jormulas de Fresnel traduzem o modo como estes coeficientes dependem dos angulos de incidéncia, de reflexdo e
de transmissdo, assim como da polarizacao da onda.

Na Fig. 1.3 mostra-se os raios incidente, reflectido e transmitido quando o vector campo eléctrico (a) se
encontra no plano de incidéncia ou (b) é perpendicular a este plano. Os vectores E e B estdo relacionados com

o vector de onda através da Eq. (1.22).

(a) (b)

Figura 1.3 - Representacio dos raios incidente, reflectido e transmitido quando
o vector campo eléctrico (a) se encontra no plano de incidéncia ou (b) é perpendicular a este plano.
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As componentes dos campos E e H paralelas a interface devem ser iguais em ambos os lados da fronteira.
No caso de os dois meios serem dieléctricos ndo magnéticos, as componentes paralelas do campo B satisfazem a

mesma condico. Neste caso, e tendo em consideracdo a Fig. 1.3(a), pode-se escrever as seguintes relacoes:
B +B.=B, (1.30)
E;cos6,—E,cos0, =E, cosd, (1.31)

Substituindo na Eq. (1.30) B = (n/c)E e combinando com a Eq. (1.31) pode-se obter os seguintes resultados
para os coeficientes de reflexdo e de transmissao correspondentes a Fig. 1.3(a):

;o =| Er | 2120080 —m cos6, (1.32)
I E ) m cos b, +n, cosb,

E | _ 2n, cos b, (1.33)

f=| =L = =P
I (Ei J n, cos @, +n, cosd,
Usando a lei de Snell pode-se escrever os resultados anteriores na forma:

, a6~ 0) (1.34)
I tan(6, +6,)

. 2send, cos 6,
1™ Sen(6,+6,)cos(6, -6,

(1.35)

Uma analise semelhante para o caso da Fig. 1.3(b), em que o campo eléctrico é perpendicular ao plano de

incidéncia, permite obter os seguintes resultados para os coeficientes de reflexao e de transmissao.

. E ) _n cosd; —n, cos b, (1.36)

+ E; ) mcos6 +n,cosb,

(o[ __2meosh 187)
E; ),  mcost;+n,cosb,

Usando a lei de Snell pode-se escrever os resultados anteriores na forma:

y = _Sen(0,-6) (1.38)
' sen(d +6)

_ 2sen6, cosb, (1.39)
sen(d; +6,)

A Fig. 1.4-ilustra a variacdo destes coeficientes com o dngulo de incidéncia para o caso da interface entre o ar (17,~1)
eovidro (n,~1.5).

Pode-se verificar da Eq. (1.34) que 7 se anula quando 6,+6, =7/2. O angulo de incidéncia 6, =0y
correspondente a esta situacgao é conhecido por angulo de Brewster e estd indicado na Fig. 1.4. Para este angulo de
incidéncia, a luz reflectida encontra-se completamente polarizada, sendo o seu campo eléctrico normal ao plano
de incidéncia. Por outro lado, uma placa de vidro posicionada segundo o angulo de Brewster é completamente

transparente para a luz cujo campo eléctrico seja paralelo ao plano de incidéncia.
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Quanto aos coeficientes de reflexao e de transmissdo em poténcia, tem-se:

R= % _ 2 (1.40)
po B _[meosf | (1.41)
P  ncosé,

Os coeficientes R e T sao chamados reflectdancia e transmitancia, respectivamente.

1.0
2 ==
© o4l 1
g a
= 0 &
g 0 : i
= I
8 n g
04} .
i
1
|
1.0 . ) . ) M . .
0 30 60 90

Angulo de incidéncia (graus)

Figura 1.4 — Variagdo dos coeficientes de reflexdo e de transmissao com o angulo de incidéncia
para o caso da fronteira entre o ar (1, 1) e o vidro (n, =1.5).

1.2.5. O limite da optica geométrica

A Optica geométrica pode ser encarada como uma aproximacdo da éptica electromagnética, valida no

limite em que o comprimento de onda tende para zero. Neste limite, as equacdes de Maxwell permitem obter

uma equacio que descreve a trajectdria da normal a frente de onda. Esta normal corresponde ao chamado raio

optico e a sua equagdo de movimento designa-se por equagdo da etkonal.

Considere-se o caso de um meio linear, liberto de fontes e isotrépico, mas nao-homogéneo, com uma

permitividade eléctrica ¢ = ¢(r). Os campos eléctrico e magnético podem ser escritos na forma:

E(r,t)=Re {Ee(r)ei“”} (142)

B(r,t) =Re{B,(r)e™ | (1.43)

onde E, e B, sdo as respectivas amplitudes complexas. Neste caso, as equagdes de Maxwell podem ser apresentadas

com o aspecto:

V-(&,E,)=0 (1.44)
V-B,=0 (1.45)
ﬁer =-ik Océe (1.46)
VxB,=i" g F (147)
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onde

ky = o\ gty = £l (1.48)

o

é a constante de propagaco no vazio e

g =20 (1.49)
€o

é a chamada permitividade relativa. Considere-se solucgoes do tipo
E,(r) = Ey(r)e™ - (1.50)
B,(r) = By(r)e™ 1" (1.51)

onde L(7) é uma funcao chamada eikonal. Substituindo as Eq.s (1.50) e (1.51) nas Eq.s (1.44)-(1.47) e considerando

o caso-limite 4y — 0, ou seja, k, — o0, mostra-se no problema PR 1.10 o seguinte resultado:
- 2 )
Vi =z =n (1.52)

As superficies L(7) = constante correspondem as chamadas frentes de onda. As normais a estas superficies tém

adirecciio de VL, que satisfaz a chamada equacdo da eikonal:
VL =n$ (1.53)

O vector unitario § é normal a frente de onda e tangente ao raio luminoso, sendo dado por:

VL VL (1.54)

S=—=—
‘VL‘ n

No caso geral de um meio ndo-homogéneo, os raios luminosos tém uma trajectéria curvilinea. Contudo, se

o meio for homogéneo, o indice de refrac¢do 7 nao depende da posi¢ao, tendo-se:

L(r) =n(xcos 0, + ycosd, +zcosb.) (1.55)
onde cos®,,cos6,,cos 6, sio os chamados co-senos directores. A direc¢do do raio optico € dada por

VL = n(cos.i +cos 49‘} +cos 49213) =ns (1.56)

Usando a defini¢ao dada pela Eq. (1.26), tem-se que o valor médio do vector de Poynting pode ser expresso

na forma:
<§>*L(E x(VLxE,))
- 2cu 0 0 (1.57)

Considerando a Eq. (1.54), tem-se:

(1.58)

Este resultado é equivalente ao obtido na Eq. (1.27) no caso de se considerar o vazio (n = 1) e mostra que a

direccao do vector de Poynting coincide com a direccao da normal a frente de onda geométrica.
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1.3. Problemas resolvidos

PR 1.1. Partindo das equagdes de Maxwel (1.7)-(1.10) e assumindo um meio material liberto de fontes, mostre que

o campo eléctrico satisfaz a equacao de onda dada pela Eq. (1.15).
Resolucio
Num meio material liberto de fontes tem-se J = 0 e p = 0. Aplicando o rotacional a ambos os membros da
Eq. (1.9), tem-se:
vx(vx@—vx[_%)—_a@xm ®
ot ot
O membro esquerdo da Eq. (1) pode ser reescrito usando a seguinte identidade:
Vx(VxE)=V(V-E)-V-VE (2)
Atendendo a que, parap = 0, setem V- E = 0, a relacdo anterior permite escrever:
Vx(VxE)=-V-VE=-VE @)
A Eq. (1) fica entao:
5O (xh (4)
~V’E=-2(VxB)
ot
Utilizando as Eq.s (1.10)-(1.12), e passando tudo para o membro esquerdo na Eq. (4), obtém-se:
2p o O
V*E-pue —E=0 (5)
He o
A Eq. (5) é aequagio de onda para o campo eléctrico, sendo a velocidade de propagacgdo da onda, v, dada por:
1 0)

oL
T

PR 1.2. Considere uma onda electromagnética plana que se propaga num meio dieléctrico e cujo campo eléctrico

é dado por:

E (z,0) = E,, COS|:IZ'[6 x10" f——= H @

3x1077

tendo-se E ,=E,=0.NaEq. (1), t é dado em segundos e z em metros. Determine a velocidade de propagacao da

onda, o seu comprimento de onda no vazio e o indice de refraccao do meio para a frequéncia em causa.
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Resolucio
A fase da onda dada é:
V4
(2)

=wt—kz =67 x10"¢— z
¢ 3x1077

Deste modo, tem-se
2z il rad/m 3)

- -7

®=06rx10" radfs, k="—=
A 3x10
A velocidade de propagacao e o comprimento de onda no meio em causa sao dados, respectivamente, por:

(4)

-7
v:%:(éﬂxlo”)&:l.sxlog m/s

(%)

107
3107 _ 600 am
VA

2
A=""=2
. (27)

O indice de refrac¢ao do meio é:

310"
€2 1.67 (6)

Ty T 18x108

O comprimento de onda no vazio é:
(7

Ay =nA =1000 nm

PR 1.3 Usando as equacoes de Maxwell, assumindo um meio liberto de fontes e considerando o caso de ondas
electromagnéticas planas, descritas pelas Eq,s (1.20) e (1.21), mostre que os campos E e B sio:
a) perpendiculares a direccao de propagacao da onda electromagnética;

b) perpendiculares entre si, satisfazendo a Eq. (1.22).

Resolugao
a) Considerando as Eq.s (1.7) (com p = 0), (1.11) e (1.20) tem-se:
ey

V-E=—-ik-E=0
De modo semelhante, usando as Eq.s (1.8), e (1.21), tem-se:
V-B=—ik-B=0 (2)

As Eq.s (1) e (2) mostram que os campos E e B sio perpendiculares a direccao de propagacao, indicada

pelo vector de onda k.

b) Assumindo os campos na forma indicada pelas Eq.s (1.20) e (1.21), a Eq. (1.9) fica:
3)

ik xE =iwB
ou seja,
4

U U .
B=—(kxE)=1p(kxE)
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Pode escrever-se a Eq. (4) na forma:
-1 -
B=—(SxE) (5)
v

onde §=k/k é o vector unitario na direccio de propagacio. A Eq. (5) mostra que os campos E e B sio

perpendiculares entre si.

PR 1.4. Dada uma onda electromagnética plana e harmonica, cujo campo eléctrico é dado por:

E.(z,t)= EOxsen{w[t - Z) + (p} , )
c
determine o correspondente campo inducio magnética B .

Resolucao
Dado que E, = E, =0, tem-se da Eq. (1.9) que

OE, 0B, (2)

(574 _W

Ou seja, usando a expressdo dada para o campo eléctrico,

0B
2. cos{w[t - Zj + @} 3)
o c c

Integrando ambos os membros da equacdo anterior em ordem a ¢ obtém-se:
1 z 1 (4)
B, (z,t)=—Ey,sen| o t —— |+ ¢ |=—E,(2,1)
c c c
Confirma-se, neste caso particular, que os campos eléctrico e inducao magnética sao perpendiculares entre

si e ambos perpendiculares a direc¢ao de propagacao, dada pelo eixo dos z. Por outro lado, as grandezas dos dois

campos estdo relacionadas na forma B = E/c.

PR 1.5. Considerando o caso de ondas planas que se propagam no vazio, mostre que a média temporal da grandeza
do vector de Poynting, que corresponde a intensidade /, é dada pela Eq. (1.27). Encontre uma relacio entre a

intensidade / e o valor médio da densidade de energia <U > .

Resolucao
No caso da propagacao de ondas planas no vazio, tem-se as seguintes expressoes para 0s campos reais:

E=E,cos¢, ¢=awt—ky-F+o ¢Y)

§=Eocos¢:c%(ﬁoxﬁo)cos¢ 2
0
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onde se usou a Eq. (1.22) para escrever o membro da direita na Eq. (2). Deste modo, o vector de Poynting é dado, a
partir da Eq. (1.26), por:

1

- . - P
S=—E,x lk(koxEO)cosz¢:8oc‘E0‘ §cos® ¢ (3)
Hoy

@

onde se considerou § =k /k e c=1/+Jue .Devidoa rapida variacao temporal dos campos eléctrico e magnético,
cujas frequéncias sdo da ordem de 10'* a 10'> Hz na zona visivel do espectro, a grandeza do vector de Poynting
varia também rapidamente com o tempo. Dado que o valor médio de cos® ¢, sobre muitos ciclos, é 1/2, a média

temporal da grandeza do vector de Poynting vem dada por:

1= () - e @

Para uma onda no vazio, a densidade de energia é dada, a partir da Eq. (1.25), por:
-2,
U:eO‘EO‘ cos” ¢ (5)
e apresenta uma média temporal
-2
(v)="2|E 6)

Deste modo, considerando as Eq.s (4) e (6), verifica-se que a densidade de fluxo / se relaciona com o valor

médio da densidade de energia na forma:

1=c(U) @

PR 1.6. Mostre que a equacao de onda, dada pelas Eq.s (1.15) e (1.16), admite solu¢Ges na forma de ondas esféricas.

Considere para o efeito as coordenadas esféricas:

x=rsenfcosg (1a)

y=rsenfseng (1b)

z=rcosd (1c)
Resolucao

O Laplaciano A = V? em coordenadas esféricas é dado por.

2
Azlzé‘[rzé’}r - 5(sen95j+2125552 2)
r-or\_ Or) r-sen@ 06 r“sen” 6 06 0¢

Uma onda esférica apresenta uma simetria esférica, ou seja, ndo depende de & e ¢. Portanto, a expressio

anterior do Laplaciano reduz-se a forma:

2
N AT X
r- or or or- ror

(3)
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Aplicando a expressao anterior a amplitude E de um campo escalar, tem-se

1 &
AE=—"_(@E (4)
r or? =)

A equacdo de onda, dada pela Eq. (1.15), assume ento o aspecto:

107 1 0’E
a5 0 ?

Multiplicando ambos os membros por 7, a Eq. (5) fica

0 1 &
?(VE)_?E(FE):O (6)

A Eq. (6) é uma equagao de onda unidimensional para 7E e tem como solucoes
rE(nt) = f(r—ct) e rEmt) = g(rtct) @)
onde fe g sdo fungdes arbitrarias. A onda
! ®)
E(r,t)=—f(r—ct)
r
representa uma onda esférica propagando-se radialmente a partir da origem » = 0, enquanto a onda
1
E(r,t)y=—g(r+ct) 9)
r
representa uma onda esférica convergindo para a origem.

No caso de uma onda harmonica esférica, tem-se

E(r,t)= ésen(a)t thkr) (10)
r

A amplitude 4/7 de uma onda esférica decresce proporcionalmente a 1/7.

PR 1.7, Um feixe laser colimado tem um diametro de 2 mm e uma poténcia de 600 mW. Determine a densidade

de fluxo do feixe e a amplitude dos campos eléctrico e indu¢ao magnética.

Resolucio

A area da secgdo do feixe é 7[(10’3)Z , pelo que a densidade de fluxo é dada por:

I 600x107

—ﬁ:1.91><105 W/m2 (1)
7(1077)

A partir da Eq. (1.27), tem-se que a amplitude do campo eléctrico é dada por:
21
Ey= [—=120x10" v/m (2)

£oC
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Usando a Eq. (1.22), obtém-se a amplitude da indug¢do magnética:

E,
B, :70 =4.00x107° T 3

PR 1.8. Considere uma onda plana monocromatica que incide na superficie de separacao entre dois meios com

indices de refraccao nen,, de acordo com a figura em baixo.

n,

Figura 1.5 - Geometria para ilustrar os raios incidente, reflectido e refractado.

Considere que a onda incidente pode ser escrita na forma El. = EOi exp{i(a)t - lgl -7)}, dando origem a duas

ondas com a mesma frequéncia: uma onda reflectida, Er = E()r exp{i(a)t—lgr -17)}, e uma onda refractada, ou
transmitida, E =E, exp{j(w[_ k- ,7)}.
Obtenha as relacGes que se devem verificar entre os angulos 0}. e Hr (lei da reflexao), assim como entre os

angulos 0, e 6, (lei da refraccdo).

Resolugao
Para que exista uma relacao entre as amplitudes das trés ondas envolvidas, valida em todos os pontos da
superficie de separa¢io entre os dois meios e para todos os instantes de tempo, torna-se necessario que os termos

de fase sejam iguais. Resulta dai que deve verificar-se a relagao:

k.-F=k F=k F ey

k.—k =bN (2)
k —k =b,N (3)

onde N é um vector perpendicular a superficie e b, e b, sdo dois escalares. Atendendo a que se tem k; = kon,5;,

k. =komS, e k, = kgyn,S$, , as relacdes anteriores podem ser escritas na forma:
n(s, —5)=a,N (4)

n,§, —m§, =a,N (5)
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onde a; =b,/k,, i = 1, 2. Projectando a Eq. (4) na superficie de separacao entre os dois meios, obtém-se o
resultado

6,=0, ©)

que corresponde a lei da reflexdo. De modo semelhante, projectando a Eq. (5) na mesma superficie de separacao,

obtém-se a relacao:

n send, =n, sen 6, (7N

que traduz a lei de Snell, ou lei da refraccio.

PR 1.9. Derive expressoes para os coeficientes de reflexao e de transmissdo no caso de uma incidéncia normal e
calcule os seus valores para uma interface ar-vidro, em que se tem n, =1 e n, = 1.5. Calcule a percentagem da
poténcia incidente que é reflectida nessa interface.

Resolucio

Quando a incidéncia na superficie de separacdo entre os dois meios é proxima da normal, tem-se 6, = 6, =0,
pelo que cosd; =cosf, 1. Neste caso, os coeficientes de reflexdo e de transmissdo ficam independentes da
polarizag¢io, sendo dados por:

e
r=n=-r = )
n +n,
2n
t:tH_t -~ (2)
n +n,

Verifica-se dos resultados anteriores que o coeficiente de transmissao é sempre positivo, enquanto que o

sinal do coeficiente de reflexdo depende do valor relativode n, e n, .

Quanto aos coeficientes de reflexao e de transmissao em poténcia, tem-se

2
Rep? | M= 3)
n +n,
n, 5 4nn 4)
r=l2p - "M
m (m +ny)

Verifica-se dos resultados anteriores que R + 7'= 1, um resultado que era esperado na auséncia de absorcao,

situacdo em que a energia radiante é conservada.

No caso de uma reflexao externa na interface ar-vidro, tem-se

1.5-1
= =0.2
: 1.5+1 ©)
t= 2 =0.8 (6)
1.5+1

Ou seja, verifica-se que cerca de 4% da poténcia incidente na interface entre o ar e o vidro é reflectida.
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PR 1.10. Usando as Eq.s (1.50) e (1.51) nas Eq.s (1.44)-(1.47) e considerando o limite 4, — 0, obtenha a equagao
da eikonal, dada pela Eq. (1.53).

Resolucio
Substituindo as Eq.s (1.50) e (1.51) nas Eq.s (1.44)-(1.47), obtém-se os resultados

VL By = (Ve, By 46,0 Ey) )
.~ V.
VL-By == (2

B=——-TF4+—" (3)
0 c ick,

E,=—I\B,xVL |+ VxB
0 g, ( 0 i€k, 0 (4)

Considerando o caso-limite 4, — 0, ou seja, k, — o, obtém-se as expressoes:

E,-VL=B-VL=0 (5)
- VLxE,
By=-""20 ©)
C
Ey =< B,xVL D
g}"

Eliminando £, na Eq. (6) a custa da Eq. (7), ou eliminando B, na Eq. (7) a custa da Eq. (6) obtém-se:
(VLx E))xVL =[VL[ By ~VL(E, VL) = ¢,E, (8)

— - — - 2 - — - — -
VLx(ByxVL) = ‘VL‘ B,-VL(B,-VL)=¢,B, )

Atendendo a Eq. (5), as segundas parcelas nos membros centrais das Eq.s (8) e (9) anulam-se e obtém-se

o resultado:
-2
VL[ =& =n’ (10)

As normais as superficies L(r) = constante tém a direccio de VL e representam os raios da Optica

geométrica. Da Eq. (10) obtém-se a equagdo da etkonal:

VL =n§ (11)

onde § é um vector unitario normal & superficie L(r) = constante.
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1.4. Problemas propostos

PPLL
a) Calcule a frequéncia, a energia, o momento e a massa de um fotdo com comprimento de onda A = 600 nm.
b) Obtenha a relacdo entre o comprimento de onda de um fotao, medido em angstroms, e a sua energia,

medida em electroes-volt.

PP 1.2. Um feixe de luz verde (A = 500 nm) incide normalmente num espelho totalmente reflector. Determine o

numero de fotdes que incidem no espelho em cada segundo, sabendo que a forga exercida nele pelaluz é de 1 N.

PP 1.3. Considere uma onda electromagnética plana que se propaga no vazio e cujo campo eléctrico € dado, no SI, por:
E.(z,t)= 103 Cos[ﬂ'(6>< 10" —2><1062)]

tendo-se £ , =E, =0. Determine a amplitude, velocidade, frequéncia, comprimento de onda e periodo da onda.

PP 1.4. Considere que o campo eléctrico tem componentes:

E =0, E, = E,explat - fr}, E =0

a) Calcule V.E e VXE.
b) Deduza as componentes (dependentes do tempo) de B.
¢) Calcule V.B e VxB.

d) Determine a relagéo que deve existir entre o e ff para que as equagdes de Maxwell sejam satisfeitas.
PP 1.5. Mostre que o valor médio no tempo de E* ¢ equivalente a (E*E/2) se E = E, exp{i(a)t —kr )}

PP 1.6. Uma onda electromagnética harmoénica plana, com comprimento de onda 4 = 650 nm, propaga-se na
direccio do eixo dos z. Supondo que a densidade de fluxo é 13.3 W/m?, e que o campo eléctrico se encontra

linearmente polarizado na direc¢ao do eixo dos x, obtenha uma expressao para o campo inducao magnética B .

PP1.7. Umalampada de 60 W converte 3% da sua poténcia eléctrica em luz. A radiacao distribui-se uniformemente
num angulo sélido de Isr. Calcule a densidade de fluxo e a amplitude do campo 6ptico a uma distancia de 50 cm

da lampada. Assuma que as ondas de luz sao harmonicas.

PP 1.8. A densidade de fluxo a uma distncia de 2 m de uma fonte pontual é 20 mW/cm? . Determine o fluxo total
emitido pela fonte. Calcule a densidade de fluxo a uma distancia de 4 m da fonte.

PP1.9. Umlaser de He-Ne (1 = 632.8 nm) emite um feixe de luz cilindrico com uma seccio de 0.35 cm?. A poténcia
recebida por um detector colocado normalmente ao feixe é de 0.5 W.

a) Calcule o valor da norma do campo eléctrico.

b) Qual a poténcia emitida por uma lampada de incandescéncia, de igual eficiéncia, situada a distancia de

2 m do detector?
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PP 1.10. Suponha que uma onda, linearmente polarizada, incide numa interface, de tal modo que o plano do
vector campo eléctrico faz um angulo ¢ com o plano de incidéncia. Mostre que, neste caso, a reflectancia é dada

por:

R=Rcos’ ¢ +R sen’ ¢,

onde R, e R, sdo as reflectincias das componentes do campo eléctrico paralela e perpendicular ao plano de

incidéncia, respectivamente.
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Capitulo 2

OPTICA GEOMETRICA

7

A dptica geométrica constitui uma descricdo aproximada do fenémeno dptico, que é aceitavel quando
as dimens6es dos componentes do sistema 6ptico (espelhos, lentes, aberturas, etc.) sao bastante superiores ao
comprimento de onda da luz. Quando esta condicdo nao se verifica, e a natureza ondulatoéria da luz nao pode ser
ignorada, esta-se no dominio da chamada dptica ondulatoria. Ou seja, a 6ptica geométrica pode ser considerada como
um caso limite da éptica ondulatdria, que se verifica quando o comprimento de onda da luz se torna desprezavel.

O elemento basico na descricao da dptica geométrica é o conceito de raio dptico, que corresponde a um segmento
de recta orientado que indica a transmissao de energia radiante de um ponto para outro num sistema 6ptico. Quando
o sistema dptico é constituido por varios meios homogéneos, o trajecto da luz é representado por uma sequéncia de
segmentos de recta. Sempre que a luz é reflectida ou refractada verificam-se descontinuidades na direc¢io desses seg-

mentos. O comportamento do raio 6ptico nestas situacoes € regulado por duas leis: a lei da reflexo e a lei da refracgdo.

2.1. Reflexao num espelho plano

A Fig. 2.11ilustra a reflexdo de um raio luminoso num espelho plano. Tendo por base a geometria desta figura e
o principio do tempo minimo de Fermat, referido no capitulo anterior, mostra-se no problema PR 2.1 que os angulos

de incidéncia, 8,, e de reflexdo, 0, , satisfazem a relacio:

N
|
I
I
|
i

6!

Figura 2.1 - Geometria para descrever a lei da reflexdo num espelho plano.

6, =6 (2.1)

1 r

A Eq. (2.1) traduz a let da reflexao, segundo a qual os angulos feitos pelos raios incidente e reflectido

relativamente a normal no ponto de incidéncia sao iguais. A lei da reflexao estabelece ainda que o raio incidente,
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o raio reflectido e a normal ao espelho no ponto de incidéncia se situam num mesmo plano, chamado plano de
incidéncia.

A Fig. 2.2 mostra a formac¢ao da imagem num espelho plano. Para um observador, os raios provenientes do
ponto B do objecto e reflectidos no espelho parecem provir do ponto imagem B’. O ponto B’esta a uma distancia do
espelho, igual a distancia entre este e o ponto B. Todos os pontos de um objecto extenso tém imagens que se podem
obter de maneira semelhante. Deste modo, pode-se concluir que a posicio da imagem nao depende da posicao do
observador e que o seu tamanho é igual ao tamanho do objecto, ou seja, que a ampliacdo é unitaria. Por outro lado,

verifica-se que o lado esquerdo no objecto aparece como o lado direito na imagem e vice-versa.

€
B

A

|
| | §
|| I
[ l
\{\\\l\\\\l\ by ) \\\l)‘t L] - ~ L3
I | o

e

| I 7 -~
| e

| 2
P Z
[ ﬂ//

Figura 2.2 - Formacao da imagem num espelho plano.

2.2. Espelhos esfericos

Um espelho esférico corresponde a parte de uma superficie esférica, que apresenta um raio R e um centro de
curvatura C. Na Fig. 2.3 representa-se os casos (a) de um espelho esférico concavo e (b) de um espelho esférico convexo.
O eixo principal do espelho é a linha que passa pelo ponto V' (chamado vértice) e pelo centro de curvatura C. Os raios
reflectem--se no espelho de acordo com alei da reflexdo (6; = 6, ). Quando os raios incidentes no espelho sao paralelos
ao eixo principal, os raios reflectidos passam, no caso de um espelho concavo, por um dado ponto F, chamado foco
principal. No caso de um espelho convexo, todos os raios reflectidos parecem provir desse foco principal, que neste

caso se situa atras do espelho.

€)) )

Figura 2.3 - Representacao (a) de um espelho esférico concavo e (b) de um espelho esférico convexo.
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A Fig. 2.4 ilustra o processo de localiza¢do da imagem de um objecto linear formada por um espelho concavo.
Sao considerados para o efeito trés raios: um que incide no espelho paralelamente ao eixo 6ptico (a), outro que
incide no vértice 7" do espelho (b) e um outro que passa pelo centro de curvatura do espelho (c). Na pratica, a

localiza¢do da imagem pode ser feita utilizando apenas dois destes raios.

Figura 2.4 - Geometria para a localizacao da imagem produzida por um espelho concavo.

Da anélise da Fig. 2.4 e assumindo a chamada aproximacdo paraxial, segundo a qual os angulos entre os

raios luminosos e o eixo 6ptico sdo suficientemente pequenos, obtém-se no problema PR 2.2 o resultado

121

s s R f (2.2)
onde s =MV, s'=MV,R=CV e

R
__K 2.3

f==3 (2.3)
¢ a distancia focal do espelho. Tem-se ainda a relagdo:

LIRS (2.4)

A grandeza A, corresponde a chamada ampliagdo lateral da imagem. Se 4, < 1 tem-se uma imagem
reduzida, enquanto que para 4, > 1 se tem uma imagem ampliada. Por outro lado, se 4,> 0 a imagem € direita,
enquanto 4, < 0 indica uma imagem invertida.

Na resolucdo de problemas relativos a determina¢io da imagem formada por espelhos esféricos é

importante estabelecer algumas convencdes quanto aos sinais das grandezas envolvidas. Assim:

a) As distancias s e s 'medidas na parte da frente do espelho sdo positivas, enquanto na parte de tras sdo
negativas. No primeiro caso, o objecto e a imagem sio reais, enquanto no segundo caso sao virtuais.

b) A distancia focal fé positiva para um espelho concavo e negativa para um espelho convexo.

c) As alturas, 1, medidas acima do eixo principal sdo positivas, enquanto abaixo desse eixo sdo negativas.

35



2.3. Lei de Snell para a refraccao

Figura 2.5 - Geometria para demonstrar a lei da refrac¢o.

A Fig. 2.5 ilustra a refraccio de um raio luminoso na interface entre dois meios homogéneos e transparentes
com indices de refraccio diferentes, 7, e n,.Como se viu no Capitulo 1, o indice de refracgdo de um meio é dado
pela razio entre as velocidades da luz no vazio e nesse meio. Tendo por base a geometria da Fig. 2.5, e usando o

principio do tempo minimo de Fermat, deriva-se no problema PR 2.3 a chamada lei da refracgdo:
n send, =n, send, (2.5)

De notar que, sendo n, < n,, se tem pela Eq. (2.5) 6, <¢;. Contudo, quando se tem n, > n, verifica-se
que 6, > 0;. Neste caso, existe um angulo de incidéncia critico, 6, = 6, , para o qual o angulo de transmissao ¢
0, =90°, Usando a Eq. (2.5) tem-se que

0, = senl(nzj (2.6)
n

Para valores do angulo de incidéncia 6, > 6,, ndo existe raio transmitido e o raio incidente sofre uma reflexdo

interna total. Este fenémeno é essencial no dominio da 6ptica guiada, como se vera no capitulo 5.

24. Refraccao numa superficie esférica

A Fig. 2.6 ilustra a trajectéria de um raio que incide num ponto P pertencente a superficie esférica
de separacdo entre dois meios homogéneos, com indices de refracgdo n, e 7, . Usando a lei da refraccio
na aproximacao paraxial, obtém-se no problema PR 2.4 a seguinte relacao entre as distancias objecto, s, e

imagem, s :
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Figura 2.6 — Geometria para o estudo da refrac¢do de um raio numa superficie esférica.

mon _mem 2.7)
s s R

A grandeza D na Eq. (2.7) é chamada poténcia do dioptro e tem por unidade a dioptria quando R é dado
em metros.

Por convengdo, considera-se que a distancia s é positiva (negativa) se a luz provém de um ponto a esquerda
(direita) do dioptro, enquanto que a distincia s’ é positiva (negativa) se a luz se dirige para um ponto a direita
(esquerda) desse mesmo dioptro. Por outro lado, o raio R considera-se positivo (negativo) se o centro de curvatura

do dioptro se situa a direita (esquerda) do vértice V.

2.5. A lente delgada

Uma lente simples é um sistema refractivo definido por duas interfaces, sendo que pelo menos uma delas
deve ser curva. O caso de uma lente esférica delgada, cuja espessura se considera desprezavel, pode ser analisado
com base na Eq. (2.7). Suponhamos que a lente é constituida por um vidro com indice de refraccao n, limitado por
duas superficies esféricas, e que se encontra no ar. A refraccdo na primeira superficie, com um raio de curvatura

R, é descrita pela equagio:

—t—m— (2.8)

onde s~ é a distancia da imagem relativamente a essa superficie. Esta imagem funciona como objecto para a
segunda refraccio, situando-se a uma distancia -s” da segunda superficie, de raio de curvatura R, . A equacio

para a segunda refraccio sera entio:

Adicionando as Eq.s (2.8) e (2.9) obtém-se

11 :(,,_1)(1_1] (2.10)
)

s R R,
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que é a chamada equagdo das lentes delgadas, também conhecida por equacdo dos fabricantes de lentes. Fazendo
s> o (> o), tem-se s’=f(s =f), onde

-1
f= (n_l)[;_I;J (2.11)
1 2

é a chamada distdncia_focal da lente. O inverso da distancia focal corresponde a poténcia da lente, que é igual a
soma das poténcias dos dois dioptros que delimitam a lente. Quando se tem f >0, diz-se que a lente é positiva,
ou convergente. Por outro lado, quando f <0, diz-se que a lente é negativa, ou divergente.

Na Fig. 2.7 representa-se a formacao da imagem de um dado objecto por uma lente delgada biconvexa.
Considera-se para o efeito trés raios: um que sai do objecto paralelamente ao eixo éptico e que, apés atravessar a
lente, passa pelo foco secundario ( F; ), outro que passa pelo centro da lente (O) e que nao é desviado, e um terceiro
raio que passa pelo foco primario ( F, ) e emerge da lente paralelamente ao eixo éptico. De facto, basta usar apenas

dois destes raios para encontrar a imagem de um qualquer ponto do objecto.

4
i F B,
4 F, i B
: i B,
- s - s' .

Figura 2.7 - Formagao de imagem por uma lente delgada biconvexa.

Considerando a semelhanca dos triangulos 4, 4,0 e B,B,0 na Fig. 2.7, tem-se que a ampliacao lateral da

imagem ¢é dada por:

4="=_2 (2.12)

Pode-se verificar facilmente das Eq.s (2.10) e (2.11) que no caso de um objecto real e situado a uma distancia s da
lente, tal que s > f; a imagem correspondente é também real (s> 0) mas invertida ( 4, < 0 ). Contudo, quando o objecto

se situa a uma distancia s < f; a imagem correspondente é virtual (s’ < 0) e direita (4, > 0).

2.6. O método matricial

Antes de construir um sistema 6ptico, pode-se usar a 6ptica geométrica para tragar raios através desse
sistema com o objectivo de estudar o seu desempenho. Para este efeito, é conveniente escrever as equagdes em
causa na forma matricial, dado que a algebra de matrizes permite tratar com relativa simplicidade o problema
da propagacdo dos raios luminosos através de qualquer sistema Optico. Nesta seccdo descreve-se os aspectos

principais do método matricial, assumindo para o efeito a aproximacgao paraxial ja antes referida.
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A Fig. 2.8 representa a propagacao de um raio luminoso através de uma lente espessa. Assume-se que as
superficies da lente apresentam uma curvatura esférica, com raios de curvatura R, (superficie da esquerda) e
R, (superficie da direita). Os pontos Ve V, sao os vértices das superficies dpticas e correspondem a interseccao

dessas superficies com o eixo dptico.

Figura 2.8 — Geometria para o tragado de raios numa lente espessa.

Usando a lei da refraccio na aproximagdo paraxial, mostra-se no problema PR 2.8 que a altura, x, e 0
angulo feito com o eixo dtico, y, do raio incidente no ponto A se relacionam com as correspondentes grandezas

(x," e y") do raio refractado através da seguinte equacdo matricial:

" 1 0
|:x1 }: D on |:x1j| (2.13)
V4 n, n V4
onde
p ="M (2.14)
R

é a poténcia do dioptro.

A matriz
1 0

R=|_D m (2.15)
ny, m

descreve a refraccao no ponto 4 da superficie esférica, sendo, por isso, chamada matriz de refracgio. O seu

determinante é:

IR =" (2.16)
)

Mostra-se igualmente no problema PR 2.8 que a altura, x" , e o dngulo com o eixo 6tico, y", do raio

refractado no ponto A se relacionam com as correspondentes grandezas do raio incidente no ponto B (x," e y,")

através da seguinte equacao matricial:

}/2 n 0 1 7/"
onde d é a espessura da lente.
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A matriz

T:{l d} (2.18)
0 1

descreve a propaga¢do do raio entre as duas superficies da lente e é chamada matriz de transferéncia. O seu

determinante é

IT[=1 (2.19)

A refracgio do raio no ponto B da segunda superficie da Fig. 2.8 pode ser descrita usando o mesmo método

que conduziu a Eq. (2.15). Neste caso, obtém-se a seguinte equag¢ao matricial:

. 1 0 "
{xz}: D, om {xz } (2.20)
V4 ny ny 72

ondex,' e y' representam, respectivamente, a altura e o angulo com o eixo 6ptico do feixe transmitido, enquanto que

ny—n
D,=-3—-2% (2.21)
R,

é a poténcia do segundo dioptro. A matriz de refraccdo para este dioptro é, entdo:

1 0
R,=|_D m (2.22)
ny Ny

O produto das trés matrizes (2.15), (2.18) e (2.22) da a chamada matriz de sistema, L, para o caso de uma

lente espessa:

all a12
L= =R, TR, (2.23)

a4y Ay
Pode-se mostrar que o determinante da matriz de sistema é:

L= R, TIR | = a,a,, ~ a,,a, = (2.24)

n3

y
Se o indice de refrac¢do for o mesmo no principio e no fim do trajecto do raio luminoso, o determinante da
matriz de sistema € 1.

No caso particular de uma lente delgada tem-se d — 0. Se essa lente se situar no ar, tem-se ainda n, =n; =1,

pelo que a sua matriz assume um aspecto particularmente simples:

1 0
Lo Ll/f J (2.25)
onde
l =D, +D, (2.26)
f

Pode-se verificar que a Eq. (2.26) esta de acordo com a Eq. (2.11).
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2.7. Matriz de sistema para a
formacao de imagem

A matriz de sistema que representa a formagao de imagem por umalente depende da matriz de transferéncia,
T,, do objecto até a lente, da matriz da propria lente, L, e da matriz de transferéncia desde a lente até a imagem,

T, sendo dada por
S=TLT, (2.27)

O procedimento que conduziu a Eq. (2.27) pode ser generalizado a qualquer sistema 6ptico. Deste modo,

indicando a matriz desse sistema na forma

S:{A B} (2.28)
Cc D

tem-se

Vi C D]
onde x, (x,) ey, (y,) representam, respectivamente, a altura e o angulo com o eixo 6ptico do raio objecto (imagem).

O anulamento dos elementos da matriz ABCD na Eq. (2.29) corresponde a diferentes situagdes que importa

analisar:

1. D = 0. Neste caso, tem-se y, = Cx, independentemente de y , significando que todos os raios
provenientes de um mesmo ponto no plano objecto, situado a uma distancia x, do eixo éptico, deixam
o sistema fazendo um mesmo angulo com o eixo éptico. Ou seja, o objecto situa-se no plano focal
primdrio do sistema.

2.4 = 0. Este caso é semelhante ao anterior, tendo-se x, = By, . Ou seja, todos os raios incidentes no
sistema 6ptico, segundo um mesmo angulo, sao focados num mesmo ponto, situado a uma distancia x,

do eixo 6ptico. Este ponto situa-se no plano focal secunddrio do sistema.

3.8 =0.Neste caso tem-se x, = Ax_independentemente dey ,significando que todos os raios provenientes
de um mesmo ponto no plano objecto convergem para um mesmo ponto no plano imagem. Ou
seja, o anulamento do elemento B da matriz de sistema permite determinar a posicdo da imagem.

Simultaneamente, verifica-se que o elemento A4 corresponde a ampliacio desse sistema.

4. C = 0. Neste caso tem-se y, = Dy, . Ou seja, todos os raios que entram no sistema numa dada direccio,
paralelamente entre si, saem do sistema também paralelamente uns aos outros, embora numa direc¢ao
diferente. Esta situacdo corresponde a configuracdo de um telescopio, sendo a sua ampliacio angular

dada pelo elemento D.
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2.8. Sistemas opticos periodicos

Um sistema 6ptico periddico consiste numa sequéncia de sistemas unitarios idénticos. Um exemplo de um
sistema 6ptico periédico é dado por um conjunto de lentes idénticas e igualmente espagadas. Outro exemplo pode
ser um conjunto de dois espelhos, formando uma cavidade 6ptica ressonante. Nestes casos, os raios atravessam o
mesmo sistema unitario repetidamente.

Considere-se um raio que entra no sistema a uma altura x, e fazendo um angulo y, relativamente ao eixo
optico. Para determinar os valores (xp, yp) desses parametros a saida do p-ésimo estagio, deve-se fazer actuar a
matriz ABCD que caracteriza o sistema unitario p vezes. A relagdo entre esses parametros a saida do p-ésimo e

do (p+1)-ésimo estagio é dada por:

Xpo | _ A4 B|x, (2.30)
7 p+l Cc D 7 P
Partindo da Eq. (2.30), e assumindo que |S| =AD —BC =1, pode-se obter a seguinte equacao para a evolucao

da altura do raio, X,
Xpi —(A+D)x,  +x,=0 (2.31)
Mostra-se no problema PR 2.12 que solugdo da Eq. (2.31) pode ser apresentada na forma:
X, :xmaxsen(pl/lﬂ//o) (2.32)

ondex e W, sdo constantes determinadas a partir das condicdes iniciais do raio e

v = COS(M)
2

Para que x, seja dada por uma fun¢do harménica, como na Eq. (2.32), a varidvel ¥ = cos™! [(A +D)/ 2]

deve ser real. Isto implica que se verifique a condi¢do

[4+D] | (2.33)
2

. . |a+D| < AU < <
Se, pelo contrario, se tiver —— > 1, entdo ¥/, sera imaginario e a solucdo serd dada por uma funcao
2
hiperbdlica, cujo valor aumenta monotonamente com p.
Uma solucao harménica assegura que a distancia ao eixo 6ptico, X, , permanece limitada para todos os

valores de p.

Ou seja, a Eq. (2.33) corresponde a uma condi¢do de estabilidade para a trajectéria do raio.

42



2.9. Aberracoes

O tragado rigoroso de raios através de um sistema 6ptico permite evidenciar discrepancias relativamente as
previsdes da teoria paraxial, ou teoria de primeira ordem, apresentada nas Seccdes 2.2 e 2.3. Essas discrepancias
sao chamadas aberracies e podem ser de dois tipos: cromdticas (devido a dependéncia do indice de refraccao com

o comprimento de onda) ou monocromdticas, que ocorrem mesmo com luz monocromatica.

2.9.1. Aberragcbes monocromaticas

A funcao seno pode expandir-se numa série de Maclaurin:

3 5
senyzy—%+%—... (2.34)

Quando se consideram apenas os dois primeiros termos no membro direito da Eq. (2.34) tem-se a chamada
teoria de terceira ordem. Os desvios desta teoria relativamente a teoria de primeira ordem déo origem as chamadas
aberracgOes primarias: aberragdo esférica, coma, astigmatismo, curovatura de campo e distor¢do. A consideragdo dos
termos de ordem superior a terceira no desenvolvimento da Eq. (2.34) permite construir aberracoes de ordem

superior. Contudo, abordaremos a seguir, de modo sumario, apenas as aberrac¢des primarias.

a) Aberragao esférica

A aberragao esférica consiste, basicamente, na dependéncia da distancia focal com a abertura para raios nao
paraxiais. No caso de uma lente convergente, os raios marginais intersectam o eixo dptico antes dos raios paraxiais
(Fig. 2.9), enquanto que para uma lente divergente acontece o contrario. A distancia entre o foco dos raios marginais
(FRM) e o foco dos raios paraxiais (FRP) designa-se por aberragdo esférica longitudinal (AEL). Esta aberracao é

positiva no caso de uma lente convergente e negativa no caso de uma lente divergente.

. oo FRP
——

= T
= Z ‘ T\—;
|
|
|
I

)
FRM, AET

I
Figura 2.9 - Aberracao esférica para o caso de uma lente convergente.

AEL

FRP: foco dos raios paraxiais; FRM: foco dos raios marginais;
AEL: aberragdo esférica longitudinal; AET: aberracio esférica transversal;

CCM: circulo de confusao minima.
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Em consequéncia da aberracdo esférica, a imagem de um objecto pontual, observada num ecra, nao é
um ponto, como seria de esperar com base na teoria paraxial. Em vez disso, verifica-se a existéncia de uma
mancha luminosa, constituida por um ntcleo central mais brilhante, rodeado por um halo produzido pelos raios
marginais. A distancia entre o eixo e o ponto em que o raio incide no ecra tem o nome de aberracao esférica
transversal (AET). Verifica-se a existéncia de uma posicao P, para a qual o didmetro da mancha luminosa no ecra
¢ minimo, correspondendo ao chamado circulo de confusd@o minima (CCM).

Os raios que passam por zonas consecutivas da lente intersectam-se numa curva chamada cdustica. A
rotacdo desta curva, em torno do eixo Optico, da origem a uma figura tridimensional, a chamada superficie
cdustica, cujo vértice coincide com o foco paraxial.

A aberracao esférica ndo pode ser completamente eliminada no caso de uma lente simples, qualquer que
seja a sua forma. Contudo, esta aberracdo pode ser reduzida, fazendo com que uma ou ambas as superficies
da lente tenham uma forma nao-esférica, ou realizando uma combinacao adequada de lentes convergentes e

divergentes.

b) Coma

O termo coma deve-se a semelhanca com a forma de um cometa da imagem de um objecto pontual situado
fora do eixo. Este efeito deve-se a variacdo da ampliacao lateral com a altura, medida relativamente ao eixo 6ptico,
do ponto de incidéncia do raio na lente. Em alguns casos, os raios marginais intersectam o plano imagem mais
préximos do eixo do que os raios paraxiais, sendo entdo o coma dito negativo. Noutros casos, os raios marginais
intersectam esse plano mais longe do eixo do que os raios paraxiais (Fig. 2.10a), tendo-se entdo um coma positivo.
Cada zona circular da lente forma uma imagem circular chamada circulo comdtico. O conjunto de todos estes
circulos comaticos, cujos raios aumentam com o raio daquelas zonas, da origem a uma figura com a forma de um

cometa, como se mostra na Fig. 2.10b.

(@) (b)

Figura 2.10 - (a) Ilustracdo de um caso de coma positivo e (b) formagéo de uma imagem comatica
a partir de um conjunto de circulos comaticos.

O coma depende da forma da lente, tal como a aberraco esférica. Contudo, os dois tipos de aberragio
diferem em varios aspectos. Em particular, a aberracdo comatica depende do angulo de obliquidade, nao se

verificando para objectos pontuais situados no eixo éptico.

¢) Astigmatismo

O astigmatismo é uma aberracdo que tem que ver com a assimetria do cone de raios incidente na lente
quando o objecto pontual esta fora do eixo 6ptico. Para a descri¢do desta aberracao torna-se conveniente definir
dois planos: o plano meridional, ou plano tangencial, que contém o raio principal (raio que passa pelo centro das
pupilas) e o eixo 6ptico, e o plano sagital, que contém igualmente o raio principal mas é perpendicular ao plano
meridional. No caso de um feixe de raios paralelos, incidindo obliquamente na lente, a configuracao dos raios

¢ diferente para aqueles dois planos. A inclina¢ao dos raios é maior no plano meridional, o que determina uma
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distancia focal inferior neste plano, comparada com a distancia focal no plano sagital. A diferenca astigmatica
entre as duas distancias focais aumenta rapidamente com a obliquidade dos raios luminosos, ou seja, com a

distancia do objecto ao eixo 6ptico.

Imagem
: \l Imagem £
Raio prnciE primfria  Secunddria

Eixo dptico

T

Figura 2.11 - Representacao das imagens astigmaticas de um objecto pontual fora do eixo dptico.

Um objecto pontual fora do eixo éptico apresenta duas imagem lineares, como se representa na Fig. 2.11:
uma imagem primdria, situada no foco tangencial F,, e uma imagem secundaria, situada no foco sagital F,.
Se um ecra for colocado entre estes dois focos, perpendicularmente ao raio principal, obtém-se em geral uma
imagem com forma eliptica. Contudo, sensivelmente a meio caminho entre F, e F, essa imagem tera uma forma

circular, correspondendo ao chamado circulo de confusao minima.

d) Curvatura de campo

A imagem de um objecto plano e perpendicular ao eixo s6 é aproximadamente plana na zona paraxial.
Quando a abertura de um sistema éptico € finita, a imagem forma-se sobre uma superficie curva; esta aberracio
primaria é conhecida por curvatura de campo ou curvatura de Petzval. A imagem de um objecto, assente numa
calote esférica S, , forma-se sobre uma outra calote esférica, S;, ambas com o mesmo centro O (Fig. 2.12). Quando
a superficie S, se torna mais plana, aproximando-se da superficie S,', as imagens deslocam-se em direc¢do a
lente, ao longo do respectivo raio principal, formando assim uma superficie parabdlica, S,, chamada superficie
de Petzval. No caso de uma lente divergente, essa superficie curva-se de modo a afastar-se do plano objecto. A

curvatura de campo pode ser anulada combinando adequadamente lentes convergentes e divergentes.

by

Figura 2.12 — Ilustrac@o da curvatura de campo.

e) Distor¢do

A distorcao é devida ao facto de a ampliacao transversal poder ser fungido da distancia da imagem ao
eixo Optico. Na verdade, as diferentes zonas da lente tém distancias focais distintas, o que determina ampliacoes
diferentes. A distor¢do diz-se positiva se a imagem de cada ponto se afasta radialmente do centro, sendo maior
o afastamento para os pontos mais marginais (Fig. 2.13b). Inversamente, a distorcao é negativa se a ampliacao

transversal diminuir com a distancia ao eixo, verificando-se uma aproximacgio de cada imagem pontual ao
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eixo (Fig. 2.13c). A distor¢ao das lentes delgadas é praticamente nula, mas as lentes espessas, convergentes ou

divergentes, determinam uma distor¢ao positiva ou negativa, respectivamente.

]
e

_I_

~+++—
s

(@) b) (©
Figura 2.13 — Tlustracio da distorc¢ao para o caso da imagem de uma rede quadrada (a).

A distorcao pode ser positiva (b) ou negativa (c).

2.9.2. AberracOes cromaticas

As aberragoes cromaticas sao especificas da luz policromatica e manifestam-se em consequéncia de o indice
de refrac¢do dos componentes épticos variar com o comprimento de onda. No caso de uma lente delgada situada

no ar, a sua distancia focal é dada por:
-1
=1 LN | R S (2.35)
R R, (n-Da

g=L_1 (2.36)

onde

sendo R, e R, sdo os raios de curvatura das superficies da lente e n o seu indice de refrac¢do. Como n depende
do comprimento de onda, o mesmo acontece com a distancia focal (Fig. 2.14). A distancia axial entre dois pontos
focais extremos numa dada gama de frequéncias chama-se aberra¢ao cromdtica axial (ACA). Existe uma posicao
entre esses pontos focais extremos em que a dimensao da mancha luminosa, correspondente a imagem de um

objecto pontual distante, é minima. Essa posi¢do corresponde ao circulo de confusao minima (CCM).

CcCM 1?.1}‘.’\
A
yer®

V,
t.‘nbe ff]o

Figura 2.14 - Tlustracdo da aberragio cromaética.

No caso de uma lente convergente, como na Fig. 2.14, o foco correspondente a luz azul, F,, encontra-se a
esquerda do foco correspondente a luz vermelha, 7, , dizendo-se entao que a aberracio cromatica axial é positiva.
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No caso de uma lente divergente, as posi¢des desses pontos focais sao invertidas, tendo-se entao uma aberracao

cromatica axial negativa.
Pares acromatas

A sobreposigdo dos pontos focais extremos F, e 7, naFig. 2.14, é possivel associando uma lente convergente
com uma outra divergente, o que resulta num par dito acromata. Se as duas lentes estiverem separadas por uma

distincia d, a distancia focal do par é dada, como se mostra no problema PR 2.9, por:

r_t 1 d (2.37)
Soh L A

onde f, e f, sdo as distancias focais das lentes. A condicio de acromaticidade do par para o vermelho e para o azul

implica:
L (2.38)
T Ja
Usando a notagdo
I S S W) (2.39)
1
(n; -Da,

e supondo que as duas lentes estao em contacto (d = 0), a condi¢io (2.38) permite obter o seguinte resultado:

& _ My Ty (2.40)

a, Mg =My

A distancia focal da lente composta pode ser especificada para a luz amarela (4M), intermédia entre o azul

e o vermelho. Para esse comprimento de onda tem-se:

a (M =Dy (2.41)

a, (M =1/,

Igualando os segundos membros das Eq.s (2.40) e (2.41) obtém-se:

f2AM _ (n,,—n,) (n,,~1 (2.42)

flAM (nlA_an) (nZAM_l)

Atendendo a que o indice de refraccdo diminui com o comprimento de onda na regiao visivel do espectro,
tem-se n, > n,,. Por outro lado, como n,,, > 1, conclui-se da Eq. (2.42) que uma das duas lentes do par acromata
deve ser divergente, enquanto a outra deve ser convergente.

Mostra-se no problema PR 2.15 que também possivel construir um par acromata a partir de duas lentes

iguais, separadas entre si por uma certa distancia d.
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2.10. Problemas resolvidos

PR 2.1. Considerando a geometria da Fig. 2.1, e o principio do tempo minimo de Fermat, obtenha a lei da reflexdo dada
pela Eq. (2.1).

Resolucao
Atendendo a que o tempo é dado pela razao distancia/velocidade e que os raios viajam com velocidade constante

num meio uniforme, o problema da minimiza¢do do tempo de percurso, imposto pelo principio de Fermat, pode ser

substituido pelo problema da minimizacao da distancia L = AP + PA’ (ver a Fig. 2.1). Dado que se desconhece a
posicao exacta do ponto P, faremos OP = x e PO' = [ — x,sendo [ = OO
Considerando a geometria da Fig. 2.1 e usando o teorema de Pitagoras, tem-se a seguinte expressao para a

distancia L:

L=~d? +x* +Jd?+(1-x) (1)

A distancia minima percorrida pelo raio € obtida derivando L em ordem a x e igualando a expressao resultante

a Zero:

dL _ x  (=x _0
e Ja iy Jate—-x)? @)

Considerando os triangulos OAP e O A P, assim como os angulos 6, e 6, da Fig. 2.1, tem--se que a Eq. (2)

permite obter o resultado:

send; = send, 3

Conclui-se, assim, que deve ter-se

0.=6 (4)

1 r

PR 2.2. Considerando a geometria da Fig. 2.4 e asumindo a aproximacao paraxial, obtenha os resultados dados

pelas Eq.s (2.2)-(2.4) para a reflexdo num espelho esférico.

Resolucao

Na aproximagio paraxial, considera-se que o angulo, &, entre o raio luminoso e o eixo dptico é suficientemente
pequeno. Nestas circunstancias, tem-se

cosf~=1,

tand = senf = 0

Com base na geometria da Fig. 2.4 e usando a aproximacio paraxial, tem-se:
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tan(PCV) =6, = Z; ¢))

tan(PEV) =26, = ; (2)

onde ‘R‘ =CP éoraioe f=FV éa distancia focal do espelho.

Por convencao, considera-se que R é negativo quando o centro de curvatura C se encontra a frente do
espelho (i.e., o espelho é concavo). Por outro lado, R ¢ positivo quando C se situa atras do espelho (i.e., o espelho

é convexo). No caso da Fig. 2.4, tem-se |R| = —R e das Eq.s (1) e (2) conclui-se que

(3)

R
/==

Considerando os triangulos OMC e O’M’C e fazendo s = MV s'=MY, f= FVe R| = CV, tem-se:

tan(OCM) =" ; (4)
s— ‘R

A n (5)

tan(O'CM") = ———
IR

Como 1g(OCM) = — tg(O'CM’") , conclui-se que
' R|—s' 2f -5
n__R=s_2f ©
h s—|R  s-2f
Por outro lado, considerando os triangulos VPF e FM'O’, tem-se

- h
tan(VEP) =—> @)

/
tan(O'FM') = (8)
s'—f

Como g (VEP) = —tg(0'FM"), tem-se
n__s—f 9)
h S
Igualando as Eq.s (6) e (9) e rearranjando a expressao obtém-se o resultado
1, r_1__2 (10)
s s f R

Este resultado confirma a Eq. (2.2).
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Dos tridngulos OMV e O'M’V tem-se

tan(OVM ) = a, (11)
s
. X
tan(O'VM') = — (12)
s
Como 1g(OVM ) =-1g(O'VM"), conclui-se que
n s'
—=4,=— 13
PR B 13)

Este resultado confirma a Eq. (2.4) para a ampliacdo lateral da imagem, 4, .

PR 2.3. Tendo por base a geometria da Fig. 2.5, e usando o principio do tempo minimo de Fermat, derive a lei de
Snell para a refrac¢io, dada pela Eq. (2.5).

Resolucio

O tempo de percurso entre os pontos 4 e 4’ na Fig. 2.5 é dado por

r="qp 2 pp (1)
C C

Considerando a geometria da Fig. 2.5 e usando o teorema de Pitagoras, tem-se

t=%\/d2+x2 +”‘—CZ\/d'2+(zr—x)2 @)

onde / =00'. Em ordem a minimizar #(x), impde-se a condicio dt/dx = 0:

dr _m X _ny (I-x) —0
dx C \/d2+x2 c \/dv2+(1_x)2

3

Com base na expressao anterior e considerando a geometria da Fig. 2.5 pode-se obter o resultado

n;send, = n, sen 6, (4)

A Eq. (4) corresponde a lei de Snell para a refraccio.
PR 2.4. Considerando a geometria da Fig. 2.6 e a lei da refrac¢do na aproximacao paraxial, obtenha a Eq. (2.7),
que descreve o efeito da refraccdo numa superficie esférica de raio R.

Resolugcao

Usando a lei de Snell para a refrac¢do no ponto P da Fig. 2.6, tem-se:

n,send, =n,sen 6, »
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Na aproximacao paraxial, esta equacio pode-se escrever na forma

m6; = n,0, (2)

Usando o teorema do angulo exterior, tem-se da Fig. 2.6 que:

b, =a+y €

0,=y-p (4)

Por outro lado, a aproximacao paraxial permite escrever
h h h
b
'

= = = 5
o= i3 ; r=% (5)

A substituicao das Eq.s (3)-(5) na Eq. (2) permite obter o resultado

n n, n,—n
MM Mo (6)
s s R

que corresponde a Eq. (2.7).

PR 2.5. As faces de uma lente biconvexa delgada, com um indice de refracgdo n, = 1.5, t€m um raio de curvatura
|R| =10 cm. A lente est4 colocada numa das paredes laterais de um tanque cheio de dgua (nag = 1.33). Um objecto
é colocado, no lado de fora do tanque, sobre o eixo da lente, a uma distancia de 50.0 cm desta. Determine a posi¢ao
da imagem.

Resolucio

Usando a Eq. (2.7) na refraccao ar/lente, tem-se

n
_ar + v v ar (1)
ﬂ + & = 7n7ag 12 (2)

Se se desprezar a espessura da lente, tem-se s, =—s,'. Nestas condi¢des, somando membro a membro as
relagdes anteriores, tem-se

s, s R R, (3

Usando os valoresn, =1, n = L5, n,= 1.33, R, =+10.0cm, R,=-10.0cm e s, =+50.0 cm, obtém-se que

a imagem se forma na 4gua, a uma distancia s,' = +29.1cm da lente.
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PR 2.6. Um sistema 6ptico produz uma imagem real de um objecto real, situada a uma distancia de 15 cm. Uma
lente biconvexa, com um indice de refrac¢do n =1.5 e raios de curvatura ‘R1‘ =10cme ‘Rz‘ =15 cm, € colocada a
10 cm do sistema 6ptico. Calcule:

a) A distincia focal da lente;

b) A distincia entre a lente e a imagem final. Caracterize essa imagem.

Resolucio
a) A distancia focal da lente é dada pela Eq. (2.11):

oo 6
f_|:(n 1)(R1 R2ji|

Substituindo os valores R, = +10 cm e R,=—15 cm, tem-se

-1
f= {o.s(é;oﬂ ~12em @)

b) O objecto original é real (s,> 0) e aimagem produzida pelo sistema dptico também ¢ real (s,' > 0). Essa ima-

gem constitui o objecto para a lente. A distancia a que se encontra esse objecto da lente é dada pela equacao de ligacao:

s,=d—s/=10—15= -5cm <0 (3)

pelo que se trata de um objecto virtual para a lente. Usando a equagao das lentes delgadas, tem-se

1 1

'
SZ S2

S —
:}ﬁsz_zf:mwzéoc

m > 0, (4‘)
s,—f —5-12 17
pelo que a imagem produzida pela lente é real. Por outro lado, tem-se que a amplia¢o total devida ao sistema 6ptico

e alente é dada por:

s/ s,
m= —? —s—z <0, (5)

pelo que a imagem ¢é invertida.

PR 2.7 Considere um objecto com 2 cm de altura colocado a uma distancia de 30 cm de uma lente biconvexa com
distancia focal /= 20 cm. No outro lado da lente esté colocado, a 100 cm desta, um espelho concavo de raio ‘R ‘ =60 cm.
a) Determine a posi¢ao da imagem dada pela lente L.
b) Qual a posicao da imagem final formada apds a reflexdo no espelho?

¢) Caracterize a imagem final formada apds reflexdo no espelho.

Resolucao

a) Tem-se

Lo 1 s/ G000

=— 5= =60 cm »
s,os f s,—f  30-20

52



b) A distancia a que se encontra o objecto para o espelho é dada pela equacao de ligacao:

s,=d —s,'=100— 60 =40 cm 2)

Por outro lado, usando a equacao para a formacao de imagem pelo espelho, tem-se:

L1 2 S,y (40)(30)
—_— - = —= S = = =
s, S f, |R T s,7f 40-30

120 cm 3)

¢) Dado que s,' > 0, a imagem produzida pelo espelho é real. Por outro lado, tem-se que a ampliacéo total é dada

slv s2|
m—[— S]{—S]—<—z>>(—3)—6>0, )

1 2

por

pelo que a imagem final formada apds reflexao no espelho é direita e seis vezes maior que o objecto original.

PR 2.8. Usando a aproximacao paraxial, obtenha:
a) a Eq. (2.15) para a matriz de refraccao numa superficie esférica de raio R, que constitui a fronteira entre
dois meios com indices de refraccion, en, ;

b) a Eq. (2.18) para a matriz de transferéncia num meio homogéneo de espessura d.

Resolugao
a) Aplicando a lei de Snell no ponto A da Fig. 2.8, e usando a aproximacao paraxial, tem-se:
n6=n,0 )
ou, considerando os angulos indicados na mesma figura:

n@y+o=n0"+4¢ (2)

onde y e 9" representam os angulos que os raios incidente e transmitido fazem com o eixo dptico, enquanto que ¢ é
o angulo entre esse eixo e a normal a superficie no ponto A. Atendendo a geometria da Fig. 2.8 tem-se ¢=x,/ R, , pelo
que a Eq. (2) fica:

m(;f + ;?J = n2(7"+ ;11) 3

Resolvendo esta equac¢do em ordem a 9" obtém-se:

X = ny)
pr=ly T (4)
ny R,

A Eq. (4) pode ser escrita na forma:

D
7/"=ﬂ7—4xl (5)
n, n
onde

p = ®

é a poténcia do dioptro.
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Atendendo a que a altura do raio relativamente ao eixo optico ndo varia aquando da refrac¢gao no ponto 4,

tem-se:

x, =x" (7

onde as linhas indicam que se est4 junto a fronteira mas no meio de transmissao, cujo indice de refrac¢do é n, .

As Eq.s (5) e (7) podem ser escritas na seguinte forma matricial:

W 1 0
P2 2]l

A matriz
1 0

R = Don 9)
n, m

é a matriz de refrac¢do no ponto A.

b) Considerando a geometria da Fig. 2.8, pode-se verificar que, quando o raio vai desde o ponto 4 até ao
ponto B, o angulo que ele faz com o eixo 6ptico nao varia, tendo-se entao

yu — yzu (10)

Por outro lado, a altura do raio relativamente ao eixo éptico varia desde xl" até xz", de acordo com a
expressao:

x2” = xl|’+ dyﬂ (11)

onde d é a espessura da lente. As Eq.s (10) e (11) podem ser escritas na seguinte forma matricial:

oo T
72 n 0 1 7/"
A matriz

T=|:1 d:| (13)
0 1

é a matriz de transferéncia, que representa a progressao do raio desde o ponto 4 até ao ponto B na Fig. 2.8.

PR 2.9. Usando a teoria matricial, obtenha uma expressdo para a distancia focal de uma lente composta,
constituida por duas lentes delgadas, com distancias focais f, e f, , situadas no ar e separadas entre si por uma

distancia d.

Resolugao
A matriz correspondente a lente composta, L., ¢ dada pelo produto de trés matrizes: duas semelhantes
a Eq. (2.25), e outra semelhante a Eq. (2.18), correspondente a progressiao do raio entre as duas lentes simples.

Assim, tem-se
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‘ 0 1||-1// 1

-1/f 1
1-d/ f, d
Tdlfh 1Sl f, 1—-dl 2
Comparando a matriz anterior com a matriz de uma lente simples, dada pela Eq. (2.25), tem-se que o
inverso da distancia focal da lente composta é dado por:

r_1,1 4 3)
fh o A
No caso d = 0, tem-se:

111 )

foh h

Este resultado pode ser facilmente generalizado para o caso de um conjunto arbitrario de lentes.

PR 2.10. Considere um objecto com altura 4, situado a uma distancia s de uma lente delgada convergente, com
uma distancia focal /. No lado oposto a lente, a uma distancia s 'desta, encontra-se um ecra. Usando o formalismo

matricial, obtenha
a) a relacdo que deve existir entre s, 5" e f, para que a imagem do objecto se situe sobre o ecra;

b) a relagdo entre a ampliacao lateral da imagem e as distancias s e s .

Resolucao
a) A matriz de sistema consiste no produto de trés matrizes, correspondentes (1) a transferéncia no ar desde
o objecto até a lente, (2) a accao da lente e (3) a transferéncia no ar desde a lente até ao plano de formacao da

imagem. Usando as Eq.s (2.18) e (2.25) para as matrizes de transferéncia e da lente delgada, tem-se

a1 0
S:{l s} 1 | {1 s} o
10\~ ~% 01

Oy
Efectuando o produto das matrizes, obtém-se
4 B -2 ss-
s:[ }_ f @
C D L s

3

A distancia a que se forma a imagem, s, é determinada fazendo B = 0, ou seja,

B=sts—>-=0
f
ou
1 1 1 (4)

—+
s s f

Este resultado esta de acordo com as Eq.s (2.10) e (2.11).
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b) A ampliagdo lateral daimagem é dada, nas mesmas circunstancias, pelo elemento 4 da matriz de sistema:

A,:A:I—%’:——’ ®)
S

Este resultado esta de acordo com a Eq. (1.12).

PR 2.11. Considere um objecto situado no ar, a distancia de 40 cm de um bloco de vidro (n = 1.5) com 1 m de
comprimento. A face desse bloco do lado do objecto tem uma forma convexa esférica, com um raio R = 10 cm.

Usando o método matricial, caracterize a imagem desse objecto que se forma no bloco de vidro.

Resolucao
Neste caso, a matriz de sistema consiste no produto de trés matrizes, correspondentes (1) a propagacao do
raio no ar desde o objecto até ao bloco, (2) a refraccao na superficie esférica e (3) a propagacao do raio no vidro desde

a superficie esférica até a imagem. Usando as Eq.s (2.15) e (2.18) para as matrizes de refrac¢io e de transferéncia,
tem-se

S )
s:{l S} 1-15 1{1 40} e
0 Ilioas) 150 1

onde s’ € a distancia da imagem ao vértice V. Efectuando produto de matrizes, obtém-se

PRSI
S _| 730 3 @)
c p||_1 2
30 3

A distancia s "é determinada fazendo B = 0, ou seja,

3240_§:0 ou s’= 60 cm. (3)
3

Por outro lado, a ampliacdo da imagem é dada, nas mesmas circunstancias, pelo elemento A4:

'

A=1-> = (4)
30

Conclui-se que a imagem é formada dentro do bloco de vidro, 60 cm a direita do vértice V' (s’ é positivo),

=1).

esta invertida (4 é negativo) e tem o mesmo tamanho do objecto (|A

PR212.
a) Partindo da Eq. (2.30) e assumindo que o determinante da matriz de sistema € unitario derive a Eq. (2.31).
b) Mostre que a solucdo da Eq. (2.31) é dada pela Eq. (2.32).

Resolucio
a) Considere-se um raio que entra no sistema a uma altura x, e fazendo um angulo y, relativamente ao eixo
optico. Para determinar os valores (xp s yp) desses parametros a saida do p-ésimo estagio, deve-se fazer actuar a

matriz ABCD p vezes. A relac@o entre esses parametros a saida do p-ésimo e do (p+1)-ésimo estagios é dada por:
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Xpet | A B|x, o)
Vo] LC DJ7,
A Eq. (1) pode ser substituida pelas seguintes relagoes:

X, =Ax ,+ By, (2)

}/p+1 = Cxp +D7/]7 (3)

Pode-se obter uma equacao que governa a evolucao da altura do raio, X, eliminando o angulo 7, entre as Eq.s

(2) e (3). Da Eq. (2) tem-se:

X, —Ax, @

Substituindo p por p+1 na Eq. (4) tem-se:

Xy = AXpi
7p+1:% 5)

Substituindo (4) e (5) na Eq. (3), obtém-se a equacao:

(6)

X, —(A+D)x, +x,=0

onde se assumiu |S| =AD -BC=1.

b) Considere-se que a solucao da Eq. (6) é do tipo:

x, =x K? (7
sendo K uma constante. Substituindo a Eq. (7) na Eq. (6) obtém-se a seguinte equacao algébrica para o parametro K:

K*—(A+D)K+1=0 €)

cujas solugoes sao:

2

Pode-se definir uma nova variavel, i, na forma:
v = cosl(A;D) (10)

Fazendo a substituicao

% — cosy 1)
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na Eq. (9), obtém-se
K =exp(Ziy) (12)
Deste modo, a Eq. (7) pode ser apresentada na forma
X, =X, exp(£ ipy). 13)

Pode-se escrever uma solugao geral a partir da combinacao linear das solucoes anteriores correspondentes

aos sinais mais e menos. Essa solucgdo geral pode ser dada na forma:
x, = x, sen(py + y) (14

onde x__ e y, sdo constantes determinadas a partir das condicdes iniciais do raio.

PR 2.13. Considere uma sequéncia de lentes delgadas idénticas, cada uma com distancia focal £, espacadas de uma
distancia constante d. Obtenha o valor maximo desse espacamento que garante uma trajectdria estavel para os

raios paraxiais.

Resolucao
O sistema unitario da sequéncia de lentes é constituido por uma distancia d no espaco livre, seguido por

uma lente. A matriz para esse sistema unitéario é dada por

1 0 1 d
s-| 1 1{1 d}: L d E[A B} @
_7 0 1 - 1=

Tem-se A=1e D=1-d/f, pelo que a condi¢io de estabilidade

‘A + D‘ <1 (2)
2
fica
1— d <1> (3)
2f
ou seja, deve-se ter
0<d<4f (4)

Assim, o valor maximo do espagamento entre as lentes que garante uma trajectdria estavel para os raios

paraxiais é igual a quatro vezes a distancia focal da lente.

PR 2.14. Uma lente de vidro crown delgada e biconvexa tem faces com raios de curvatura de 10.0 cm. Quando se
encontra no ar, forma-se uma imagem com luz amarela a uma distancia de 20.0 cm dessa lente. Atendendo a que os
indices de refraccdo para a luz azul e vermelha sdo 7, = 1.501 e n,=1.509, respectivamente, calcule a extensdo da

aberracdo cromatica axial correspondente a estes comprimentos de onda.
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Resolucao
A equacdo de uma lente delgada situada no ar é dada por

¢

Diferenciando a Eq. (1) e considerando que, para uma dada posicao do objecto, s € uma constante, tem-se

(2)

As'=—s" Lt An
R R

O sinal menos no resultado anterior significa que, como o indice de refrac¢io 7 diminui quando o

comprimento de onda aumenta, a distincia s’ deve aumentar com o comprimento de onda.

Usando para s’ o valor de referéncia correspondente a luz amarela (s’ = 20.0 cm) e considerando
An=n,-n, =810, R, =+10cm e R, =—10cm, tem-se que a aberragdo cromética axial é dada por

3

-0 o

As] L1 J(8x103):6.4><103 m

PR 2.15. Considere duas lentes delgadas convergentes e iguais, separadas por uma distancia d. Obtenha uma
expressao para essa distancia
a) que garante a mesma distincia focal do par para a luz com comprimentos de onda A, e A,.

b) que satisfaz a condicdo da alinea a) quando A, =4, —AA/2 e Az =4, +AA/2, com Ad<< 4, .

Resolucio
a) Usando a Eq. (3) do problema PR 2.9, tem-se que a distancia focal do par de lentes é dada por
12 d ¢Y)
S foA) [
onde f,(4) é a distancia focal de cada uma das lentes para o comprimento de onda 4. Pretende-se ter f(1,) = f(1;),

pelo que devera ser:
2 2d _ 2 2af 2)
S fo (A folAg) [ (Ag)

Da Eq. (2) obtém-se o resultado
3)

2R fols)
Jo(A)+ fo(Ap)

b) Nas condicoes referidas, tem-se:

(4)

N A df,
R~ il %)

- AL( ©
fo ()= fo(A0)+ 5 (dﬂ,l .
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Substituindo as Eq. (4) e (5) na Eq. (3) e desprezando no numerador o termo em (A/l)2 , tem-se o resultado

d =1y (). (6)

Ouseja, aslentes devem estar separadas de uma distancia igual a distancia focal, calculada para o comprimento
de onda central A,,.

2.11. Problemas propostos

PP 2.1. Um objecto esta situado a distancia de 10 cm do vértice de um espelho convexo com uma distancia focal

de 8 cm. Determine a posi¢do e a ampliacdo lateral da imagem.

PP 2.2. Um objecto de 2 cm de altura esta situado 15 cm a frente de um espelho esférico (a) concavo e (b) convexo, com

um raio |R| =10 cm. Determine a posicao e a natureza da imagem em cada caso.

PP 2.8 Um objecto com 1 cm de altura encontra-se, direito, 3 cm a frente de um espelho concavo, com um raio
|R| = 12 cm. Determine a posicao e a ampliacdo lateral da imagem resultante e faca o correspondente diagrama

de raios.

PP 2.4. Derive uma expressio para o deslocamento lateral sofrido por um raio que incide segundo um angulo ¢
numa lamina transparente de faces paralelas, com um indice de refraccio 7 e uma espessura d, situada no ar.

Obtenha esse deslocamento lateral para os casos i) ¢ = 0 e ii) ¢ = 1/2.

PP 2.5, Coloca-se uma lamina transparente de faces paralelas, com indice de refracio n=1.5 e espessura d=3mm,
a esquerda de uma lente convergente, de distancia focal f'= 50 cm. A que distincia (a esquerda) da 1amina deve
ser colocada uma fonte pontual, para que o feixo emergente da lente seja paralelo ao eixo Optico? Assuma a

aproximagao paraxial na resolu¢ao do problema.

PP 2.6. Uma esfera de vidro, com um indice de refraccao n, apresenta uma cavidade esférica concéntrica, cheia de
ar, com um raio (7) igual a espessura da camada de vidro. Na superficie interna da esfera encontra-se um objecto
pontual, que é observado do exterior, na direc¢do diametralmente oposta. Mostre que a imagem assim observada

estd a uma distancia r(n —1) / (3n —1) do objecto.
PP 2.7. Uma esfera de vidro (n = 1.5) de raio R tem metade da sua superficie coberta por um filme reflector. Um

pequeno objecto é colocado no eixo da esfera a uma distancia 2R da superficie ndo espelhada. Encontre a posicao

da imagem formada pelas superficies refractiva e espelhada.
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PP 2.8. Considere uma lente delgada convergente com distancia focal f. Mostre que a distancia mais curta entre

um objecto (real) e a sua imagem (também real) é 4f.

PP 2.9. Um objecto com a altura de lcm esta situado a 15 cm de uma lente delgada, que tem uma distancia focal

/= 10cm. Encontre a posicdo e as caracteristicas da imagem correspondente.

PP 2.10. Mostre que os elementos da matriz de sistema para uma lente espessa, L, dada Eq. (2.23), sao dados pelas
seguintes expressdes: a,=1-dD,/n,, a,=dn /n,, a, =[dDD,/n,—D —D)/n, e a,=(n, /n)[l—dD,/n).

Mostre que o determinante dessa matriz é |L| =a,a,—a,a, =n/n,

PP 2.11. Mostre que a matriz representando a reflexao num espelho esférico concavo de raio R é dada por:

1 0
E=2 |
R

PP 2.12. Resolva o problema PR 2.5 usando o método matricial.

PP 2.13. Uma fonte pontual de luz encontra-se a 40 cm de uma lente convergente, com uma distancia focal
/=20 cm. Um bloco grande de vido (n = 1.5), apresentando uma face plana perpendicular ao eixo 6ptico,
encontra-se no lado oposto da lente, a uma distancia de 30 cm desta. Usando o método matricial, determine a

que distancia da lente se forma a imagem da fonte.

PP 2.14. Uma cuba cheia de dgua (indice de refraccao 4/3) apresenta, numa das suas faces verticais, uma janela
semi-esférica, com um raio de 20 cm. Um feixe colimado de luz, paralelo ao eixo da semi-esfera, incide na cuba.
Desprezando a influéncia do vidro da janela na trajectéria dos raios luminosos, calcule:

a) A poténcia do dioptro e as distancias focais objecto e imagem.

b) A distancia do vértice do dioptro a que se situa o foco dos raios marginais.

¢) A distancia que separa o foco dos raios marginais do foco dos raios paraxiais (aberracio esférica
longitudinal).

d) O diametro da mancha luminosa observada no plano focal dos raios paraxiais (aberracao esférica

transversal).

PP2.15.a) Uma lente de vidro crown e outra de vidro flint sao coladas por forma a constituirem um par acromata.

Mostre que as distancias focais das lentes crown e flint satisfazem a equacao:
K cf f +K f f c = 0

Ldny,
ny—1dA

sendo 7, o valor do indice de refracgao do vidro no centro do espectro visivel e AL o intervalo de comprimentos

de onda desse espectro.

b) Para o vidro crown tem-se k.= 0.0169, enquanto que para o vidro flint é K  =0.0384. Mostre que se deve
usar uma lente convergente de vidro crown e uma lente divergente de vidro flint para se obter um par acromata

convergente.
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Capitulo 3

INTERFERENCIA

As solugdes da equacio de onda dada pela Eq. (1.15) satisfazem o principio da sobreposigdo, segundo o qual
o campo eléctrico total £, em qualquer ponto do espaco onde duas ou mais ondas se sobrepdem, é igual & soma
vectorial dos campos eléctricos dessas ondas. O fendmeno da interferéncia consiste na interaccio entre essas ondas.
Dessa interaccao resulta um padrao em que a distribui¢ao da intensidade difere da soma das intensidades das ondas
intervenientes, observando-se a existéncia de bandas brilhantes e escuras, chamadas franjas de interfréncia.

O primeiro registo do fenémeno de interferéncia foi realizado por Robert Boyle (1627-1691), quando
observou os chamados anéis de Newton. A designacio destes anéis deve-se ao facto de Newton ter efectuado
também uma série de experiéncias relativas a este efeito. Contudo, as primeiras experiéncias envolvendo
propriamente os efeitos da interferéncia da luz foram realizadas por Thomas Young (1773-1829) em 1802. Os
resultados destas experiéncias contradiziam a teoria corpuscular da luz de Newton, pelo que foram rejeitados pela
generalidade dos cientistas da época. Dez anos mais tarde, Fresnel realizou uma nova série de experiéncias que
confirmaram os resultados de Young e que conduziram a consagracio definitiva da teoria ondulatéria da luz, em
detrimento da teoria corpuscular.

O fenémeno da interferéncia encontra um vasto campo de aplica¢do no ambito da chamada intererometria
6tica. Os interferometros sao dispositivos capazes de medir pequenas variacoes de alguma grandeza fisica, através
da analise das alteracoes verificadas num padrio de interferéncia criado por dois ou mais feixes. Eles podem
ser usados, por exemplo, para testar a qualidade de uma superficie ou de um filme dieléctrico; podem também
ser usados para medir distincias da ordem das dezenas ou centenas de metros, como acontece no estudo da
estabilidade de grandes estruturas. A grandeza medida nestes casos é, geralmente, o caminho éptico, isto é, o

produto do caminho geométrico pelo indice de refrac¢do do meio.

3.1. Interferéncia de duas ondas

De acordo com o principio da sobreposicao, se num dado ponto do espago se verificar a presenca de varios

campos, El s Ez , .-, 0 campo Optico resultante, E , ¢ dado por:

E=E1+E2+... 3.1

Na pratica, a grandeza que se mede € a intensidade, que é proporcional a média temporal do quadrado do

modulo do campo. No caso de haver apenas duas ondas, tem-se:
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()= (& + B} & + E:)=( )+ (B )+2(E: £2) (3.2)
Dado que apenas nos interessam os valores relativos da intensidade, considera-se a seguir que a intensidade

~2
é dada simplesmente na forma [/ = <‘E ‘ > . A Eq. (38.2) pode ser escrita, entdo, na forma:
[=1,+1,+2(E -Ey) (3.3)

onde /; e [, sdo as intensidades de cada uma das ondas interferentes. Toda a informacao acerca da interferéncia
esta contida no terceiro termo da Eq. (3.3). A interferéncia pode ser construtiva ou destrutiva, consoante o sinal
deste termo seja positivo ou negativo, respectivamente. Se esse termo for nulo em todos os pontos do espaco, isso
significa que as ondas nao interferem, pelo que se tem uma distribuicao uniforme da intensidade. Uma condigao
necessaria para que o termo de interferéncia na Eq. (3.3) seja diferente de zero é que os campos eléctricos das

duas ondas nao sejam ortogonais.

Considere-se duas ondas planas polarizadas linearmente, na forma:

El = E"m cos(a)t—l;1 -r+€1) (3.4a)
Ez = Eoz cos(a)t - l€2 F+ 82) (3.4b)

onde & e &, sdo as fases iniciais. Neste caso, o termo de interferéncia na Eq. (3.3) é dado por:

[1'2 = 2<E1 . Ez> = EOI . Eoz COS& (3,5&)

onde

o=k ¥—k, 7+ -¢ (8.5b)

é a diferenca de fase entre as duas ondas interferentes, resultante da diferenca de percursos épticos, (k; ¥ —k, - ¥),
e da diferenca de fase inicial, (&, —&,). Se esta tltima contribuico for constante, &, — ¢, = const., diz-se que as
fontes das duas ondas sao coerentes.

Quando os campos Em e Eoz sao ortogonais o termo de interferéncia é nulo, pelo que se tem uma
distribui¢do uniforme da intensidade. Quando esses campos sao paralelos, a distribui¢ao da intensidade pode ser
escrita a partir das Eq.s (3.3) e (3.5) na forma:

I1=1,+1,+2,/11, coso (3.6)
Se as duas ondas tiverem a mesma amplitude, /; =/, e a Eq. (8.6) fica:
I =41, cos’ g 3.7

Neste caso, a intensidade resultante é 4/, quando se verifica uma interferéncia totalmente construtioa,
correspondente a uma diferenca de fase entre as duas ondas de 6 = p27 (p=0,+1,+2,...). Por outro lado, a
intensidade resultante é nula no caso de uma interferéncia totalmente destrutiva, correspondente a uma diferenca
de fase & =(2p + 1)z . O principio da conservacao da energia implica que, se a intensidade em cada um dos feixes
for /;, aintensidade resultante seja 2/, . Contudo, em consequéncia do fenémeno de interferéncia, a distribuicao

espacial da intensidade ndo é uniforme, variando entre um valor maximo (47, ) e um valor minimo (zero).
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3.2. Representagao complexa

Em muitas situagGes, é possivel ignorar a natureza vectorial das ondas luminosas. Uma dessas situacoes
ocorre, por exemplo, quando todas as ondas luminosas se propagam na mesma direccio e possuem 0 mesmo
plano de vibragao. Nestas circunstancias, a analise da sobreposicao dessas ondas pode ser facilitada usando a

representacio complexa para o campo eléctrico.

Considere-se a situacdo em que os campos eléctricos das ondas interferentes sio colineares, com a mesma

frequéncia e dados na forma escalar por:

= i(orta;)
E =E, e (3.8a)

— i(wt+a,)
E, = E, e (3.8b)
O campo resultante é dado por:
E=E, +E,=(E, e+ E, e)e = E et e (3.9)
onde
Eoei“ =E, e+ E, el (3.10)
é a amplitude complexa da onda resultante, dada pela adi¢cao das amplitudes complexas das ondas iniciais.

O médulo, £, e a fase, ¢, da amplitude complexa do campo resultante podem ser expressos em fungao

dos parametros correspondentes das ondas individuais. Atendendo a que

E2 = (B \Epe™ )

(3.11)
tem-se
E2 =(E, & + E, ¢ \E, ¢ + E,, e |
= B2+ B3 + By E,, (@) 4 e ) ) (3.12)
Usando a relacao de Euler, pode-se escrever a Eq. (3.12) com o aspecto
E; =Ej +Eg, +2E, E,, cos(e; —at,) (3.13)
resultado que é equivalente ao da Eq. (3.6).
Por outro lado, separando as partes real e imaginaria da Eq. (3.10), tem-se
Eycosa = E, cosa, + E,, cosa, (3.142)
E,sena = E, sena, + E, sena, (3.14b)
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Dividindo membro a membro as equagdes anteriores, obtém-se o seguinte resultado para tga:

Ey sena, + Ey, sena
tanq = =2 Lo 2 (3.15)
Ey cosa, + Ej, cosa,

Os campos dados pelas Eq.s (3.8) e (3.9) encontram-se representados por vectores no plano complexo na

Fig. 3.1.
Im Im
A '
Ey /N
: 5
ﬂ"l'i R s s > R
> he & L e
E, Im E,
JP .
/
/(o —ay)
L
Eq
74
—» Re
E, +E,

Figura 3.1 - Representacao da soma dos campos El e Ez no plano complexo.

Os resultados anteriores podem ser generalizados para o caso da sobreposi¢do de um nimero arbitrario, N,

de ondas harmonicas. Nesta situacao, a amplitude complexa da onda resultante é dada por
. N i 6
ia _ ia; 1
Eye'” = Zone / (3.16)

J=1

sendo £, e o dados por

N N N
Ey =Y Eo;+2) > Ey By cos(a; ~a;) (3.17)
J=1 i>j j=1
e
N
ZEOJ. sena;
tang =L ——— (3.18)
ZEO/' cosa;

J=1
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3.3. Interferéncia por divisao da frente
de onda

Uma maneira de ter duas ondas em condi¢des de interferirem, consiste em obter essas ondas a partir de
partes espacialmente distintas de uma mesma frente de onda original. Nisto consiste a chamada interferéncia por

divisdo da frente de onda.

3.3.1. A experiéncia de Young

Parailustrar ainterferéncia por divisdo da frente de onda, examinaremos em seguida a chamada experiéncia

de Young, cuja representacdo esquematica se apresenta na figura 3.2.

Considere-se uma onda plana monocromatica que incide numa fenda estreita S. Desta fenda emerge uma
onda cilindrica, que incide, por sua vez, em duas outras fendas, S; e S, , estreitas e pouco espagadas entre si.
As duas fendas obtém amostras espacialmente distintas da frente de onda originada em S. Numa situagio de
simetria, essas amostras estao exactamente em fase e as fendas comportam-se como duas fontes secundarias
coerentes. Analisaremos a interferéncia produzida pelas duas ondas num plano situado a uma distancia D do

plano que contém as fendas S, e S, .

Figura 8.2 — Geometria da experiéncia de Young.

Aluz proveniente de S, percorre uma distancia 7 , enquanto que a luz vinda de S, percorre uma distancia
7,, até chegarem ambas ao ponto P no plano de observagao. Assumindo as condigdes de simetria acima referidas,

a diferenca de fase entre as duas ondas no ponto P deve-se apenas a diferenca de percursos, sendo dada por:
S=k(r,—1) (3.19)

Tem-se uma interferéncia completamente construtiva para é = p27 ( p=0,+1,12,...), o que corresponde

a uma diferenca de percursos:

ry—r = pA (3.20)
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Suponhamos que a distancia D é muito superior a altura y do ponto de observacao, medida relativamente

ao eixo dos x, i. e., y«D . Nestas condicoes, a geometria da Fig. 3.2 permite escrever:

send, = r;lrl ~tanf, = ha (8.21a)

2
€ h
r,—r y+g b

send, = 2 ~tanf, = _ 2 (8.21b)
h D
2

Somando membro a membro as equagdes anteriores e assumindo que A«y, tem-se

nTh= . (3.22)

D

Assumindo que as duas fendas sio iguais, a distribuicao da intensidade no plano de observacao é dada a
partir das Eq.s (3.7), (3.19) e (3.22) na forma:

h
I =4I, cos’| 72 yj 3.23
0 [/w (323

onde /; é a contribuicio de uma tinica fenda.

Atendendo as Eq.s (3.20) e (3.22), tem-se que um maximo de intensidade se encontra a uma altura

D
V= n pA (8.24)

O espacamento entre dois maximos consecutivos é:

D
Ay =V =V, = ;/1 (3.25)
Verifica-se da Eq. (3.25) que o espacamento entre as franjas de interferéncia é directamente proporcional
a distancia a que se encontra o plano de observagao e inversamente proporcional a separacio entre as fendas S|
e §, da Fig. 3.2.

A analise feita a propdsito da experiéncia de Young pode ser facilmente adaptada a outros interferémetros por
divisao da frente de onda, Descreve-se a seguir trés destes interferémetros: o espelho duplo de Fresnel, o bi-prisma

de Fresnel e o espelho de Lloyd.

3.3.2. O espelho duplo de Fresnel

O espelho duplo de Fresnel é constituido por dois espelhos planos que fazem entre si um pequeno angulo &
(Fig. 3.3). A luz proveniente de uma fonte S é reflectida nos dois espelhos, de tal modo que as ondas reflectidas
parecem provir de dois pontos, S, e S,. Estas dois pontos assumem o papel das fendas S| e S, na representacao
da experiéncia de Young da Fig. 3.2. O padrao de interferéncia pode ser observado num plano situado na regiao

de sobreposicao dos dois feixes reflectidos.
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Figura 3.3 — Representacao do espelho duplo de Fresnel.
Os pontos S, S, e S, situam-se sobre a circunferéncia de centro O e raio R = SO , tendo-se
S8, =h=~26R (8.26)

A distancia entre o plano das fontes virtuais S, e §, e o plano de observagdo ¢ D = R+d, sendo d a

distancia de O ao plano de observacgao. O espagamento entre as franjas é dado por:

Ay = 21 = R+d)A (3.27)
h 26R

3.3.3. O biprisma de Fresnel

Figura 3.4 — Representacdo do biprisma de Fresnel.

O biprisma de Fresnel consiste em dois prismas colados nas suas bases, como se representa na Fig. 3.4.
Quando uma onda cilindrica incide nos dois prismas, a parte superior da frente de onda é refractada para baixo,
parecendo que a onda assim refractada provém de uma fonte situada em S, . Quanto a parte inferior da frente de
onda original, ela é refractada para cima, parecendo que a onda refractada provém de uma fonte situada em S, .
O padrao de interferéncia forma-se na regiao de sobreposicao dos dois feixes refractados. O espacamento entre as

franjas é dado igualmente pela Eq. (3.27), tendo-se, neste caso,
0=(mn-a (3.28)

onde 7 é o indice de refrac¢do e ¢ € o angulo do prisma.
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3.3.4. O espelho de Lloyd

O espelho de Lloyd ¢é constituido por um unico espelho, no qual é reflectida parte da frente de onda
emitida por uma fonte S (Fig. 3.5). Esta fonte encontra-se bastante préxima do plano do espelho. O padrao
de interferéncia é obtido por sobreposicao da onda reflectida no espelho e da parte da frente de onda vinda
directamente da fonte S. O espagamento entre as franjas no plano de observacao é dado, igualmente, pela Eq.

(3.27), onde & é a separacio entre a fonte S e a sua imagem S’ produzida pelo espelho.

™

_5_'

= T |

D

Figura 8.5 — Representacao do espelho de Lloyd.

O espelho de Lloyd apresenta um aspecto que o distingue dos outros interferémetros referidos antes. De
facto, dado que o angulo de incidéncia da luz no espelho é proximo de 90°, verifica-se que a luz reflectida apresenta
uma diferenca de fase de 7 rad relativamente aluzincidente. Como consequéncia deste desfasamento adicional,

a Eq. (3.23) para a distribuicao da intensidade é alterada e assume a forma :

h
I =41 sen’| 22 yj
0 (AD (3.29)

Neste caso, tem-se uma franja escura para y = 0, em vez da franja brilhante observada em posi¢ao analoga

na experiéncia de Young.

3.3.5. O interferbmetro de Rayleigh

O interferémetro de Rayleigh baseia-se, igualmente, no esquema da experiéncia de Young e encontra-se
representado na Fig. 3.6. A luz proveniente da fonte pontual S é colimada antes de passar pelas duas fendas S|
e §,. Os feixes emergentes dessas fendas passam pelos tubos 7' e 7, que se encontram cheios de gés. As franjas
de interferéncia sdo formadas no plano focal da lente L e movem-se quando a pressao do gas num dos tubos é
alterada. A contagem do ntiimero de franjas deslocadas, N, permite medir a varia¢do do caminho 6ptico através do

tubo e, portanto, a variagdo do indice de refrac¢io do gas, An. Se o comprimento do tubo for d, tem-se

N =an (3.30)
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Figura 3.6 — Esquema do interferémetro de Rayleigh.

Para um gas diluido, o indice de refrac¢ao difere da unidade num valor proporcional a densidade, de modo
que n-1 é proporcional a pressdo. O indice de refrac¢ao obtido numa dada medi¢ao pode, depois, ser usado para
calcular o seu valor para uma pressao diferente. Este interferémetro mostra-se particularmente ttil no diagnéstico

de plasmas e tem sido usado para medir variacdes do indice de refraccao da ordem de 10°%.

3.4. Interferéncia por divisao de amplitude

E possivel observar igualmente o fenémeno da interferéncia entre duas ondas provenientes de uma
mesma regido da frente de onda inicial. Neste caso, é a amplitude dessa onda que ¢ dividida, falando-se entao em

interferéncia por divisdo da amplitude.

n, n, n,

Figura 8.7 — Geometria para o estudo da interferéncia por divisdo de amplitude

num filme dieléctrico.

Uma situagdo em que se verifica este tipo de interferéncia ocorre na reflexdo de uma onda que incide
nas faces de um filme dieléctrico. Esta situacdo encontra-se representada esquematicamente na Fig. 3.7. A onda
incide no ponto P do filme, verificando-se a reflexdo de uma parte da amplitude em direc¢@o ao ponto S, enquanto
que a outra parte é transmitida para o interior do filme, sendo posteriormente reflectida no ponto Q e seguindo
depois até ao ponto R. As caracteristicas do fendmeno de interferéncia entre essas duas ondas dependem da
diferenca entre os respectivos percursos dpticos, os quais sdo dados pelos produtos das distancias espaciais e dos

indices de refraccao dos meios percorridos.
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O percurso 6ptico (PO) correspondente ao trajecto desde o ponto P até ao ponto O, e depois até ao ponto
R, no interior do filme dieléctrico, com uma espessura d e um indice de refraccio n,, é dado por:
nyd
cosé,

PO sor =2 (3.31)

Por outro lado, o percurso dptico entre os pontos P e S no meio com indice de refraccdo n, é dado por:
PO =nR senf =n,R sen, (3.32)

onde se usou a lei de Snell para a refrac¢ao. Por outro lado, tem-se

PR =2d tan 6, (3.33)

A diferenca de percursos opticos, A, dos dois raios é dada entao por:

A=PO. PO =% (1 _sen®6) = 2n,d cos0) (3.34)
=PO55; B~ oosd (1-sen”6,) =2n,d cos, .

t

A diferenca de fase correspondente a diferenca de percursos opticos é igual ao produto entre o niimero de

ondas para o vazio e A, isto é,

47dn, cos 6,
)

Contudo, assumindo que n; < n, > n; na Figura 3.7, existe uma variacdo de fase adicional de =, ocorrida

§=koA= (3.35)

na reflexdo no ponto P. Em consequéncia, a diferenca de fase total entre as duas primeiras ondas reflectidas pelo

filme dieléctrico é dada por:

S'=kAtm= 4227:2 dcosO, +rx (3.36)

3.4.1. Franjas de Haidinger

Se o filme dieléctrico for iluminado por luz ndo colimada, e se a espessura desse filme for constante, podem
observar-se franjas de igual inclinagdo, também conhecidas por franjas de Haidinger. As franjas brilhantes

ocorrem quando 0'= p27 , ou seja, para angulos dados por:
cosd, = M (3.37)
4n,d

onde se considerou o sinal menos na Eq. (3.36). Este resultado pode ser escrito em termos do angulo de incidéncia

usando a lei de Snell:

2 292
send, = n —M (3.38)
n, 16d°n
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3.4.2. Franjas de Fizeau

Se um filme dieléctrico for iluminado com uma onda plana, entdo cosé, é constante para todo o filme e
cada franja de interferéncia, brilhante ou escura, corresponde a uma dada regido do filme com espessura dptica
bem definida. Por exemplo, a espessura correspondente a uma dada franja brilhante obtém-se a partir da Eq.
(3.36) fazendo O'= p2rx :

g - 2rthA

4n, cosd, (3.39)

Estas franjas sao chamadas firanjas de Fizeau ou franjas de igual espessura.

3.4.3. Anéis de Newton

Colocando uma lente convexa em contacto com uma placa de faces planas, obtém-se um filme dieléctrico
entre as superficies vizinhas dos dois elementos. As franjas de igual espessura observadas neste caso tém a forma

circular, com centro no ponto de contacto (ponto O da Fig. 8.4, sendo designadas por anéis de Newton.

Figura 8.8 — Geometria para a descri¢do dos anéis de Newton.

Na Fig. 3.8, designa-se por R o raio de curvatura da lente, enquanto que o raio de um dos anéis de Newton é
indicado por x e a espessura do filme correspondente a esse anel por d. Estes trés parametros podem relacionar-

-se através do teorema de Pitagoras:
x*=R*—(R-d)* (3.40)
ou seja,

x*=2Rd—d*~2Rd (3.41)

tendo-se considerado na aproximacao anterior que R»d . Assumimos que a incidéncia é praticamente normal, pelo

que se tem cos@, = 1. O raio da franja brilhante de ordem p obtém-se combinando a Eq. (3.39) com a Eq. (3.41),
tendo-se:

X = M (3.42)
’ 2n,
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Do mesmo modo, o raio da franja escura de ordem p é:
PAHR (3.43)

Geralmente, o filme entre a lente e a placa de faces planas é de ar, pelo que se tem n, =1. Verifica-se dos
resultados anteriores que, se o contacto entre os dois elementos for perfeito, a intensidade da franja central (no
ponto X, =0) é minima. A regularidade dos anéis de Newton pode servir para caracterizar o grau de perfei¢do

das superficies de uma lente.

3.5. O interferometro de Michelson

De entre os varios interferémetros por divisdo de amplitude, o mais conhecido e, historicamente, o mais
importante ¢ o interferémetro de Michelson, que foi desenvolvido pelo fisico norte-americano Albert Michelson
(1852-1931). Este interferémetro pode funcionar com uma fonte mais extensa que a usada na experiéncia de

Young, aumentando assim a intensidade no padrao de interferéncia.

| E—— |

E X e ma

S*__'_'__J Ez

DF | PC

Figura 8.9 — Geometria para a descri¢do do interferémetro de Michelson.

Na Fig. 3.9 apresenta-se uma representagio esquematica do interferémetro de Michelson. O feixe de luz
proveniente da fonte S é dividido em dois feixes usando um espelho semi-transparente, que funciona como divisor-
-de-feixe, DF'. Os dois feixes seguem entdo trajectos independentes e ortogonais, sdo reflectidos nos espelhos £ e £, ,

e voltam a encontrar-se no mesmo divisor-de-feixe, a partir de onde se verifica a sua interferéncia.

E de notar que um dos feixes atravessa trés vezes o divisor-de-feixe, enquanto que o outro o atravessa
apenas uma vez. Por esse motivo, introduz-se uma placa de compensacao, PC, no braco DF E, , paralela e com
a mesma espessura de DF, embora sem qualquer camada reflectora nas suas superficies. A inclusao desta placa
permite compensar os efeitos de dispersdo do feixe em DF e garante que qualquer variagdo de percursos 6pticos

nos dois bracos do interferometro depende apenas de alteracoes da sua geometria.

Olhando para o divisor-de-feixe a partir do detector, observa-se uma imagem do espelho E, , indicada por
E; ,junto do espelho E;. A imagem E; e o espelho £, formam um filme dieléctrico com uma espessura d e um

indice de refraccdo n, =1.
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A diferenca de percursos 6pticos entre os raios reflectidosem E, e E, é 2d cos 8 ,pelo que acorrespondente

2
diferenca de fase é f 2d cos@.

Contudo, existe um desfasamento adicional de 7 rad entre os dois raios, dado que um deles se reflecte
internamente e o outro externamente no divisor de feixe. Por isso, a diferenca de fase correspondente a uma franja

escura no plano de observacio é:
S=p2n= i:Zd cos @ (3.44)

onde p é um inteiro. Se a distancia d for constante, observam-se franjas de igual inclinagio com forma circular. O

valor maximo de p ocorre no centro desse conjunto de franjas, correspondente a 8 =0:

2d
Pmax = (3.45)
Ay

Quando d aumenta, as franjas afastam-se do centro, aparecendo ai sucessivas franjas de ordem superior. A

intensidade nessa posicao varia de acordo com a expressao:

I1=1, [l - cos(za)dﬂ (3.46)
c

onde se fez a substitui¢do

o_2r (347)
¢ A
e se assumiu um divisor-de-feixe 50:50. A intensidade é dada assim pela soma de um termo constante com um

outro oscilatério.

O interferémetro de Michelson pode ser utilizado para realizar medigoes de distancias de um modo bastante
preciso. De facto, do exposto anteriormente, tem-se que, quando um dos espelhos sofre uma translacdo de 4,/2,
cada franja se desloca de modo a ocupar o lugar da franja adjacente. Contando o nimero de franjas, N, que passam

por uma dada posicao de referéncia, é possivel determinar a distancia Ad percorrida pelo espelho, dada por:

Ad = N% (3.48)

Inversamente, a Eq. (3.48) permite calcular o comprimento de onda /4, uma vez conhecido o deslocamento

do espelho e o nimero de franjas N correspondente.

3.0. Ointerferometro de Mach-Zehnder

O interferémetro de Mach-Zehnder é um outro dispositivo baseado na divisdo da frente de onda. Em
comparagdo com o interferdmetro de Michelson, este interferdmetro mostra-se mais flexivel, dado que os

trajectos dos raios, incidente e reflectido, em cada um dos espelhos sao distintos, tornando-se entao necessario
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usar um segundo divisor-de-feixe (Fig. 3.10). Dado que os trajectos da luz nos dois bracos do interferémetro
sao distintos, o alinhamento deste dispositivo revela-se relativamente dificil. Contudo, pela mesma razao, ele
tem encontrado variadissimas aplica¢es. Quando um objecto é colocado num dos bracos do interferémetro, a

diferenca de percursos 6pticos entre os dois bragos ¢ alterada e o padrao de interferéncia é afectado.

O interfer6metro de Mach-Zehnder é habitualmente utilizado para estudar o fluxo de gas em tuneis de vento
na presenca de obstaculos. Um dos feixes passa através do tinel de vento, enquanto que o outro passa através de
placas de compensacao adequadas. Este estudo baseia-se no facto de o indice de refraccao ser, em muitas situacoes,
proporcional a densidade do gas. O feixe dentro do tinel passa através de regides com diferentes densidades
e, portanto, diferentes indices de refrac¢do, o que se reflecte na formagdo de franjas de contorno no padrao de

interferéncia.

DF

Figura 3.10 — Representaco esquematica do interferémetro de Mach-Zehnder.

3.7. O interferdbmetro de Sagnac

O interferometro de Sagnac foi implementado pela primeira vez em 1911 e caracteriza-se por os dois feixes
seguirem o mesmo trajecto, mas com sentidos opostos. O dispositivo pode apresentar trés ou quatro espelhos e
é relativamente estavel e facil de alinhar. Uma pequena varia¢do na orientacao de um dos espelhos determina o
aparecimento de um padrao de franjas paralelas no plano de observacao.

A utilizagdo de um interferémetro exige tipicamente a possibilidade de impor variag¢des apenas num dos seus
feixes. Contudo, no caso do interferémetro de Sagnac, dado que os seus dois feixes se encontram sobrepostos, ele
nao pode ser usado no modo convencional. Aliés, este interferémetro mostra-se insensivel a qualquer efeito, para
além da rotagdo em torno de um eixo perpendicular ao plano do dispositivo. A rotagdo provoca um encurtamento

do caminho 6ptico para um dos feixes e um alongamento desse caminho para o outro feixe.

Supondo que o anel constituido pelo interferémetro de Sagnac apresenta um raio médio R, entdo o tempo
gasto pela luz para dar uma volta ao dispositivo na auséncia de rotagio é 27R /¢ . Contudo, se esse anel estiver a

rodar com uma velocidade angular o, o caminho 6ptico de um dos feixes é aumentado de

_ 2R
C

ds oR (3.49)

enquanto que o caminho 6ptico para o outro feixe é encurtado do mesmo valor. Ou seja, considerando um dado

ponto de referéncia no anel, tem-se que o primeiro feixe chega a esse ponto com um atraso no tempo de ds/c,
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enquanto que o segundo feixe chega a0 mesmo ponto com um avango de ds/c. A diferenca no tempo de percurso é
dada entao por
ds R w Aw

C C C

onde A4 é a area do anel.

N

|
E\.
A
Y
)

Y

Figura 3.11 — Representacao esquematica do interferémetro de Sagnac.

Supondo que o comprimento de onda da luz usada no interferémetro é 4, o correspondente periodo é
T = A/c, pelo que o deslocamento das franjas de interferéncia provocado pela rotagio sera dado por
At A
AN = 2L _ 449 (3.51)
T cA
resultado que foi confirmado experimentalmente. Este método foi usado por Michelson e Gale, em 1925, para

determinar a velocidade angular da Terra.

3.8. Interferdmetros com fibras opticas

Como se vera no capitulo 5, a luz pode propagar-se ao longo de enormes distancias em fibras de vidro que
apresentam uma atenuacgao bastante reduzida. Deste modo, surgiu com naturalidade a ideia de usar essas fibras
Opticas para guiar os feixes de luz correspondentes aos dois bragos de alguns dos interferémetros anteriormente
descritos. Os interferémetros assim realizados caracterizam-se pela sua configuracdo bastante simples, por
apresentarem uma elevada sensibilidade e por serem bastante estaveis.

Por exemplo, o interferémetro de Mach-Zehnder, descrito na sec¢ao 3.6, pode ser realizado usando fibras
6pticas nos seus dois bracos, como se mostra na Fig. 3.12. Neste caso, a varia¢ao da fase da luz que se propaga na
fibra 6ptica é causada por algum parametro externo (temperatura, pressao, tensao, campo magnético, etc.) e pode
ser medida com bastante rigor através dos seus efeitos no padrio de interferéncia. Na realidade, o interferémetro
de Mach-Zender em fibra 6ptica constitui um sensor com caracteristicas bastante superiores as de muitos sensores

convencionais.
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Figura 3.12 — Representacio esquematica do interferémetro de Mach-Zehnder utilizando fibras dpticas.

Os feixes emergentes das duas fibras podem ser considerados na pratica ondas esféricas divergentes, que se
fazem sobrepor usando um divisor e feixe. Contudo, em contraste com o que acontece com uma fonte pontual que
emite uniformemente em todas as direc¢Oes, neste caso, os feixes interferentes apresentam uma distribuicdo de
amplitudes Gaussiana. Em consequéncia, o padrao de franjas circulares, que é observado, apresenta uma distribui¢ao
global de intensidade também Gaussiana. Quando as duas extremidades das fibras se aproximam uma da outra, as

franjas circulares expandem-se. Inversamente, as franjas contraem-se quando essas extremidades se afastam entre si.

O interferémetro de Sagnac, descrito na sec¢do 3.7, pode também ser realizado com fibras dépticas e usado
como giroscopio, como se mostra na Fig. 3.13. O sistema faz uso de uma bobina de fibra 6ptica, ao longo da qual se
propagam os dois feixes de luz em sentidos opostos, sendo sensivel a rotacdo em torno do eixo da bobina. A diferenca

entre os tempos de percurso dos dois feixes é dada pela Eq. (3.50), correspondendo-lhe uma diferenca de fase dada por

8nawNA

C

A@ = kycAt = (3.52)
onde A4 é a area e N nimero de espiras da bobina. Por exemplo, se se pretender medir a rotagdo da Terra (15°/h),
utilizando uma bobina de raio R = 0.4 m, com 500 voltas de fibra éptica e luz com comprimento de onda 4 =0.6328 pum,

deve poder medir-se uma variagao da fase de 2.4 x 10 *rad.

Figura 8.18 — O interferémetro de Sagnac em fibra éptica. FMM: fibra monomodo.
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3.9. Interferéncia por reflexdes multiplas

Na discussao da Sec¢ao 3.4 desprezaram-se as multiplas reflexdes nas faces da lamina dieléctrica. Contudo,
essa aproximacao deixa de ser valida quando a reflectividade das faces é significativa. Nesta Sec¢io considera-se
o efeito dessas multiplas reflexdes e mostra-se como, neste caso, a lamina de faces paralelas pode constituir uma
cavidade ressonante.

A Fig. 3.14 mostra a geometria para o estudo do efeito das multiplas reflexdes numa lamina de faces paralelas.
Assume-se que uma onda de amplitude 4 incide na lamina. Designa-se por r’ o coeficiente de reflexdo na face
anterior da lamina (reflexdo externa), por 7 o coeficiente de reflexdo na face posterior da lamina (reflexao interna),
por ¢ o coeficiente de transmissdo para dentro da lamina e por ¢’ o coeficiente de transmissao para fora da lamina.

A primeira onda transmitida através da lamina pode escrever-se na forma:
E, = Att'e' ") (3.53)

Cada onda transmitida subsequentemente apresenta, em relacio a anterior, um factor 7 na amplitude e uma

diferenca de fase constante dada pela Eq. (3.35). Deste modo, a onda transmitida de ordem 7 pode escrever-se na forma:
E, =" Att' '@ P et 0 (3.54)

onden =0, 1, 2, .... Pelo principio da sobreposicao, o campo resultante no ponto de observacao é dado pela soma
dos campos correspondentes a todas as ondas transmitidas. Ao efectuar-se essa soma, pode por-se em evidéncia

o factor comum £, de modo que se tem:

E, =E, (1 +r2e +rte 41060 4 ) (3.55)

d

| n, n

Figura 3.14 — Geometria para a analise do efeito das multiplas reflexdes numa lamina dieléctrica de faces paralelas.

A série geométrica no interior do paréntesis da Eq. (3.55) converge se r2¢'% <1.A ondaresultante é dada entio
por:
E =E 1
0 .
! 1-r2e®

-7’ cosS+i# *send (3.56)

:EO

1-2r*cosd +r*
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A intensidade transmitida através da lamina é dada por J, = E,E, */2, ou seja:

"2

m— (3.57)
1-2r%cos S +r*

onde /;, = A% /2 é aintensidade incidente. Nio havendo absorcdo de energia, tem-se que 7' = 1— 72 . Usando esta
relagio e a identidade trigonométrica cosd =1—2sen’ (0/2), aEq. (3.57) pode-se apresentar na forma:

o1 1 (3.58)

onde

2
Fo_ (3.59)

=

€ o denominado coeficiente de finesse.

A funcio [1 +F senz(é‘/Z)T1 =1,/1; na Eq. (8.58) é a chamada funcdo de Airy, que se representa na Fig.
3.15 para diversos valores da reflectividade r2. Pode-se verificar desta figura que o valor da funcdo de Airy é
maximo (igual a um) para 0 =27, qualquer que seja o valor de 7. Quando 7 se aproxima de 1, a intensidade
transmitida é reduzida, excepto na proximidade dos pontos onde ocorrem esses maximos.

No caso de nao haver absorc¢ao de energia, a intensidade incidente deve ser igual a soma das intensidades

dos feixes reflectido e transmitido:
I,=1+1, (3.60)

A intensidade correspondente ao feixe reflectido pode ser obtida usando as Eq.s (3.58) e (3.60).

1

= r =03
r’=0.6
r’=09

—)

T 2r
)

Figura 3.15 — Funcao de Airy para varios valores da reflectancia R = P

T S

3.10. O interferometro de Fabry-Perot

O interferémetro de Fabry-Perot é constituido por duas superficies com elevada reflectancia, geralmente
separadas por ar. A reflectancia dessas superficies é normalmente aumentada por aplicacdo de revestimentos
metalicos parcialmente reflectores. O interferometro de Fabry-Perot é habitualmente utilizado na analise da

estrutura fina das riscas espectrais e a sua descricdo baseia-se na teoria apresentada na Sec¢do 3.9.
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A definicao das franjas no padrido de interferéncia formado pela luz transmitida através da cavidade de
/2 .Pode

verificar-se da Eq. (3.58) que este valor da intensidade ocorre quando & = 0,,,, +0 *,sendo J,,,, =27 e

Fabry-Perot pode ser caracterizada pela largura a meia altura dessas franjas, correspondente a 1, = (1, ) ax

O*= 25en1(1j (3.61)
JF
Atendendo a que F é geralmente elevado, tem-se que sen (1/ JF )=1/ JF , pelo que a largura total a
meia altura y =20 * é dada por:

y= 4 (3.62)
JF
Das Eq.s (3.61), (3.62) e (3.59) pode verificar-se que, quanto maior for a reflectincia R = r 2 , mais estreitas
se tornam as franjas brilhantes no padrao de transmissao.

Outra grandeza usualmente definida é a finesse da cavidade, @, dada pela razao entre a distancia entre

maximos adjacentes e a largura a meia altura:

cp:zlzﬁﬁ (3.63)
/4 2

O poder de resolucdo cromdtica, R, do interferémetro é dado por A;,/A4,, onde A, é o comprimento
de onda médio da luz e A4, é o valor minimo da diferenca entre dois comprimentos de onda resoldveis. Como
critério de resolucdo, estabelece-se que dois comprimentos de onda, 4, e 4,, sdo resoliveis desde que as fungoes
de Airy associadas a esses comprimentos de onda se intersectem abaixo do ponto de meia altura do pico de
intensidade. Na situacio de separa¢ido minima, a variagio de fase quando se vai desde o maximo de intensidade
de A, até ao maximo de intensidade de A, é Ad =y, dada pela Eq. (3.62). Por outro lado, diferenciando a Eq.
(8.35) obtém-se:

_ —4znd sen 6,
ﬂ’O

AS A, (3.64)

Ocorre uma franja brilhante quando se verifica a condicao:

2nd cosb, = pA, (8.65)
Diferenciando esta equacao tem-se

—2ndsen6,A0, = pAl, (3.66)
A partir das Eq.s (3.62), (3.64) e (3.66) tem-se que

A5:y©2;zp%:i (3.67)

A F

O poder de resolugdo cromatica é dado entdo por:

w0 _PT [ (3.68)
Ay 2

Da Eq. (3.65) pode ver-se que o valor méximo de p ocorre quando cos@, =1, tendo-se:
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_d

o = (3.69)
Pma X
Neste caso, tem-se da Eq. (3.68) que
R = ”Z}” JF (3.70)

Chama-se banda espectral liore de um interferémetro a diferenca de comprimentos de onda (AA4),,,
correspondente a uma variacao da distancia d de 4;,/2, ou a uma varia¢do em p de uma unidade, ou seja, a uma
variagio da diferenca de fase AS =27 . A banda espectral livre é a diferenca maxima de comprimentos de onda
que pode ser medida sem ambiguidade pelo interfer6metro.

Tendo em consideracao a Eq. (3.67), pode-se escrever:

Ao

(A pet =— 3.71)
p

Substituindo nesta equagio o valor méximo de p dado pela Eq. (3.69) obtém-se a banda espectral livre minima:
2
Ad),, =20 (3.72)
( )bel Ind

E de notar que a razio entre a banda espectral livre e o valor minimo da diferenga de comprimentos de
onda resoluveis é igual a finesse @, definida na Eq. (3.63). De facto, usando as Eq.s (3.68), (3.69) e (3.72) tem-se:

Ay _ 7
=ZJF=0 (8.73)
Ay 2 JF

No espectro visivel, a finesse das cavidades de Fabry-Perot é geralmente da ordem de 30.

3.11. Coeréncia

Nas seccOes anteriores assumiu-se em geral que a luz era monocromatica e produzida por uma fonte
pontual. Contudo, nenhuma fonte é verdadeiramente pontual, nem a luz emitida é, em alguma circunstancia,
rigorosamente monocromatica, de modo a poder ser descrita por uma onda sinusoidal estendendo-se infinitamente
no espaco e no tempo. Ou seja, na pratica, a luz nunca é verdadeiramente coerente. A coeréncia pode ser definida

como a estabilidade da fase de uma onda, tanto no espago como no tempo.

3.11.1. Comprimento e tempo de coeréncia

Pode-se considerar que a luz quase-monocromatica é constituida por um grande nimero de trens de ondas
de extensdo finita e com fases relativas arbitrarias. A luz proveniente de dois pontos separados entre si por uma

distancia menor que o comprimento de um trem de ondas elementar é coerente e podera interferir, como sucede
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com uma onda monocromatica. Contudo, se a distancia entre esses pontos for superior ao comprimento de um
trem de ondas, ento a luz deles proveniente é incoerente e no interferira. O comprimento de um trem de ondas
elementar é designado por comprimento de coeréncia. Por outro lado, chama-se tempo de coeréncia ao tempo que
esse trem de ondas demora a passar por um dado ponto.

A largura de uma linha espectral, em termos de comprimento de onda, A4, e em termos de frequéncia,

Av, relaciona-se com o comprimento de coeréncia, /,, na forma

2
A (3.74)
Adl Av
onde ¢ é a velocidade da luz. A Eq. (3.74) mostra que o comprimento de coeréncia é infinito apenas se a linha espectral
tiver uma largura nula, o que nunca sucede na realidade. O comprimento de coeréncia relaciona-se com o tempo de

coeréncia, z,,do modo

I =crt, (8.75)

c

Usando as Eq.s (3.74) e (3.75) pode-se concluir que
Av-t,~1 (3.76)

Este resultado corresponde ao chamado principio de incerteza.

Os valores tipicos do comprimento de coeréncia da luz situam-se numa gama que pode ir desde 1 pm, como
sucede com a luz branca, até algumas dezenas de km, como acontece com a luz emitida por alguns lasers. A luz

emitida por uma lampada de sddio ou de merctrio apresenta um comprimento de coeréncia na ordem de 1 cm.

3.11.2. Fungao de coeréncia mutua e grau de coeréncia

Considere-se uma fonte extensa, de largura de banda reduzida, que produz um campo luminoso E(7,?).Os
efeitos da polarizacao nao sero incluidos na discussao que se segue, pelo que uma representagao escalar do campo
é suficiente. Sejam E(7},t)=E|(¢) e E(#,,t)=E,(t) os campos em dois pontos P, e P, . Um detector colocado
a sailda de um interferémetro, que combine a luz proveniente destes dois pontos, permite medir a intensidade
correspondente, 1, que é proporcional ao valor médio do quadrado do médulo do campo resultante. Ignorando o

factor de proporcionalidade, tem-se
1) =({E,(t+ 1) + E;(OH{E, (t + 7) + E, () }¥) (377

onde o asterisco indica o complexo conjugado, < > denota uma média no tempo e 7 representa um atraso relativo que

existira normalmente entre os dois campos combinados. Desenvolvendo o produto na expressao anterior, tem-se
1(z) = (B (t+ D)E; (¢ + 1)+ (B, (O, (0) + (E (¢ + ) E; (6)) + (E; (t+ ) E, (1)) (3.78)

Os primeiros dois termos na Eq. (3.78) representam simplesmente as intensidades nos pontos P e P,,
enquanto que o terceiro e quarto termos traduzem a interferéncia entre os dois campos. Estes dois tltimos termos
sao o complexo conjugado um do outro, pelo que ambos contém a mesma informacao. Convencionalmente usa-se

o terceiro termo para definir a chamada funcdo de coeréncia mitua, T, (1) :
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L, (1) =(E,(t+ D E; (1)) (3.79)

E de notar que, quando os pontos P e P, coincidem e 7 =0, a fun¢do de coeréncia mitua reduz-se as

respectivas intensidades:
L) =1, L, (0)=1, (3.80)
Usando as Eq.s (3.79) e (3.80), pode-se escrever a intensidade a saida do interferémetro na forma
I(r)=1,+1,+2Re{T;, (1)} (3.81)

A funcao de coeréncia mutua pode ser normalizada na forma

I, (7) (3.82)

72 = 06, ©

sendo a nova grandeza chamada grau de coeréncia complexo. Usando esta defini¢do e a Eq. (3.80), pode-se escrever

a Eq. (3.81) do modo
I(t)=1,+ 1, +2/I.I, Re{n, (z)} (3.83)

Este resultado traduz o principio geral de interferéncia para luz parcialmente coerente.
V12
desigualdade de Schwarz permitem mostrar que 0 < ‘ 71 (T)‘ <1. Quando ‘ %, ‘ =1 tem-se a situagdo de coeréncia

total, enquanto que o caso ‘7/1 5 ‘ = (0 corresponde a situac@o de incoeréncia total. Finalmente, o caso 0 < ‘ 7, ‘ <1

, € conhecido como grau de coeréncia. A Eq. (3.82) e a

O médulo do grau de coeréncia complexo,

corresponde a uma situagao de coeréncia parcial.
A wvisibilidade, V, de um conjunto de franjas de interferéncia é definida a custa dos valores maximo e

minimo da intensidade no padrao de interferéncia, sendo dada por:

V — Imax _Imin (384‘)
]max +Imin

Pode-se exprimir a visibilidade em func¢ao do grau de coeréncia ‘ 7, (r)‘ na forma

211,
V= Tl I, (0) (3.85)

Quando a intensidade dos dois campos € igual, /, = [, , tem-se
V =y, @) (3.86)

ou seja, a visibilidade das franjas proporciona uma medida directa do grau de coeréncia das ondas interferentes.

3.11.3. Coeréncia temporal

Quando os dois pontos P, e P,, referidos na secgdo anterior, sdo coincidentes, a fungdo de coeréncia mttua,
dada pela Eq. (3.79), reduz-se a funcdo de autocoeréncia do campo, tendo-se T}, (7) =1}, (r) =L, (r) =T'(7).

I'(z) é a chamada funcdo de autocoeréncia nesse ponto, para dois instantes de tempo espacados de 7. Esta situagao

84



verifica-se, por exemplo, no interferémetro de Michelson, em que 7 é igual a razao entre a diferenca de percursos nos
dois ramos do interferémetro e a velocidade da luz, c.
A funcdo de autocoeréncia I'(z) é dada por:
T/2

(7) = (E(t+7)E (1)) = ;ig% j E(t+7)E, (t)d (3.87)

-T/2

Esta funcdo pode ser normalizada, resultando no chamado grau de coeréncia temporal complexo:

(r)= y (3.88)
0)

Atendendo a que I'(0) =/, é o valor maximo (real) do mddulo de T'(7), tem-se que ‘y(r)‘ <1.
Usando as defini¢des anteriores, pode-se escrever a intensidade no plano de observacao na forma:
I(r) =21, +2Re{[(r)} = 21,[ +Re{y(7)}] (3.89)

Mostra-se no problema PR 3.14: que, no caso de uma onda harménica, dada por E, (f) = Eoei“” ,avisibilidade
das franjas de interferéncia é V'=1. Este resultado corresponde a um caso limite, em que a luz é completamente
coerente. Tal situac@o acontece, aproximadamente, com a luz emitida por um laser monomodo estabilizado. No
limite oposto, tem-se o caso da luz completamente incoerente, caracterizada por ‘7/(1’)‘ =0 para 7#0. Aluz
solar ou a luz proveniente de uma lampada de incandescéncia sdo exemplos em que esta situacdo se verifica
aproximadamente.

No caso de muitas fontes de luz, quer naturais, quer artificiais, a visibilidade das franjas de interferéncia
decresce monotonamente com o atraso temporal 7. Quando esse decaimento é de l/e, o atraso temporal
correspondente da o tempo de coeréncia, 7, , que se relaciona com o comprimento de coeréncia, I, na forma dada
pela Eq. (8.75).

No caso do interferémetro de Michelson, o atraso temporal entre as duas ondas interferentes é devido
a diferenca dos seus percursos Opticos. Quando se usa luz branca, a diferenca de percursos nos bracos do
interferémetro deve ser inferior a um comprimento de onda para que a visibilidade do padrio de franjas seja
boa. Contudo, no caso de se usar luz emitida por um laser, atendendo ao valor elevado do seu comprimento
de coeréncia, a visibilidade dessas franjas mantém-se elevada, mesmo quando os comprimentos dos bragos do

interferometro sao muito diferentes.

3.11.4. Coeréncia espacial

As caracteristicas de interferéncia da luz, emitida por muitas fontes, sao afectadas negativamente quando
as dimensodes dessas fontes aumentam. Nestes casos, importa considerar a interferéncia da luz proveniente
de elementos espacialmente distintos da fonte. Este problema serd analisado nesta sec¢ao tendo por base a
experiéncia de Young.

Considere-se as fendas de Young iluminadas por luz proveniente de uma fonte extensa com diametro 2d,
em vez da fonte pontual S, considerada na anédlise da Seccao 3.3. A fonte extensa pode ser encarada como um
conjunto de fontes pontuais independentes. As ondas emitidas a partir do ponto S da fonte, situado no eixo,
chegam as fendas S| e S, com a mesma fase, dando origem a um sistema de franjas no plano de observacio com

um maximo no eixo 6ptico. Contudo, um ponto S’ da fonte situado fora do eixo (Fig. 3.16) dara origem a um
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sistema de franjas desviado lateralmente em relacio ao anterior. De facto, as distdncias /, = 'S, e [, = §'S, ndo

sdo iguais neste caso, pelo que existe uma diferenca de fase entre as duas ondas originadasem S, e S, :

2
& —6 = 7(11 —1)

(3.90)

Neste caso, 0 maximo de interferéncia de ordem zero no plano de observacao, encontra-se desviado do eixo de

A
ym =7y(ll _12)

onde Ay é o espacamento entre as franjas, dado pela Eq. (3.25).

L

(3.91)

Figura 8.16 — Geometria da experiéncia de Young para o caso de uma fonte extensa.

Suponhamos agora que os dois pontos S e S’ emitem simultaneamente. Quando a fonte extensa é

incoerente, a diferenca de fase entre as ondas geradas em S e S’ varia aleatoriamente. Neste caso, obtém-se

no plano de observacdo uma distribuicdo de intensidade dada simplesmente pela soma das intensidades dos

sistemas de franjas correspondentes a cada um dos dois pontos emissores. Deste modo, para que as franjas de

interferéncia sejam visiveis, os sistemas de franjas gerados por S e S’ nao devem estar muito desviados entre si.

Concretamente, ndo deve acontecer que o maximo de um sistema coincida com o minimo do outro sistema. Esta

condicao requer
Ay
< —_
‘ym‘ 2
Ou seja, tendo em conta a Eq. (3.91), deve ser
A
1| < 5

Considerando a geometria da Fig. 3.16, tem-se

2,72
L=Jd—n2y+ 1 ~ L3 —dhd

8L
4d> +h* +4hd
L=\[drhi2p+ 1} ~L+28 T2 TC
8L
pelo que
hd
‘11_12‘27
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A Eq. (3.93) da entao

hd _ 2 (3.96)
L 2 '

Este resultado constitui a condi¢do de coeréncia espacial para o caso de uma fonte extensa e incoerente.

Quando se considera o padrao de interferéncia no plano de observagio perto do eixo dptico, tem-se que as
distancias entre essa regido e as duas fendas S| e S, sdo praticamente iguais. Nestas circunstéancias, o padrao de
interferéncia reflecte a relacdo entre os campos E(7,¢) e E(7,,t) nas duas fendas S, e §,, respectivamente, a qual

pode ser representada pela funcao de correlagio:
L(7,7,0) =T, (0) = (E(5, 0 E * (7,1)) (3.97)

A funcao dada pela Eq. (3.97) é chamada funcdao de coeréncia espacial.

3.12. Problemas resolvidos

PR 3.1. A visibilidade, V, de um conjunto de franjas de interferéncia é definida a custa dos valores méaximo e
minimo da intensidade no padrio de interferéncia, tal como é dado pela Eq. (3.84). Obtenha uma expressao
para a visibilidade do padrao de franjas resultante da interferéncia de duas ondas coerentes cujos campos sao

paralelos. Qual é a visibilidade desse padrao quando as amplitudes das duas ondas sao iguais?

Resolucio
Da Eq. (3.6) tem-se que

L =15 +1,+24 1|1, (1)

L =1 +1, =211, (2)
pelo que se tem

- 2411, (3)

L+,

No caso de as amplitudes das duas ondas serem iguais, tem-se [, = [, = [, pelo que a visibilidade é dada

a partir da Eq. (3) por

2 102_

V= 1 (4)
21,

Verifica-se, assim, que a visibilidade é maxima nesta situagao.
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PR 3.2. Obtenha a intensidade resultante da sobreposicao de NV ondas com amplitudes iguais nos casos em que
(a) as ondas sdo coerentes e se encontram em fase no ponto de observacao e

(b) as ondas sio incoerentes.

Resolugao

(a) A intensidade é proporcional ao valor médio no tempo do quadrado da amplitude do campo eléctrico,
Eg. No caso de as ondas serem coerentes, se encontrarem em fase no ponto de observaco e apresentarem a
mesma amplitude, tem-se da Eq. (3.17) que

) N ) N N
Toc By =Y Eg,+2) > E By ®
j=1

i>j j=1
2

N
= D Ey;

J=1
Verifica-se deste resultado que, quando se tem a sobreposicao de ondas coerentes e em fase, a intensidade

resultante € proporcional ao quadrado da soma das amplitudes dessas ondas. No caso em que as ondas tém a

mesma amplitude, tem-se
22
loc N°Ej, (2

(b) Se as ondas sobrepostas forem incoerentes, em virtude da variacao rapida e aleatéria da diferenca de

fase entre essas ondas, os valores médios dos co-senos na Eq. (3.17) sdo nulos, tendo-se

N
2 2
loc Ey = Ep,; ©)
j=1
Ou seja, quando se tem a sobreposicao de ondas incoerentes, a intensidade resultante é simplesmente igual

a soma das intensidades individuais. No caso de as amplitudes das ondas serem iguais, tem-se o resultado:

I <NE, (4)

PR 3.3 Um feixe de luz com comprimento de onda A ilumina as duas fendas na experiéncia de Young, que se
encontram espagadas de 1.5 mm. A distancia entre o plano das fendas e o plano de observagao é de 15 m e o
espacamento entre duas franjas brilhantes consecutivas nesse plano de observacao é 6.3 mm. Qual é o comprimento

de onda daluz ? Assumindo que as duas fendas sio iguais, como se distribui a intensidade no plano de observacao?

Resolugao
Usando a Eq. (3.24), tem-se

B (15x107)(6.3x10°7)

A=A =6.3x10"m 1
D Y 15 W

Por outro lado, de acordo com a Eq. (3.23), a distribui¢ao da intensidade no plano de observacio é dada por:

—3
[=41, cos{’jg) =41, cosz(mJ =41, cos?(500y) W/m® (2)
I X1U
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A intensidade tem um valor méximo / =4/, (franja brilhante) quando 500y =nz,n =0, £1, £2...eum
valor minimo / =0 (franja escura) quando 500y = (2n+1)7/2,n =0, £1, £2 ....

PR 3.4. Monta-se uma experiéncia de Young, utilizando luz com comprimento de onda A = 600 nm. Quando se coloca
um filme de material transparente em frente de uma das fendas, a franja de ordem zero move-se para a posicao
ocupada anteriormente pela franja brilhante de ordem 5. Sabendo que o indice de refraccao do filme é n = 1.5,

determine a sua espessura.

Resolucao
Observa-se uma franja brilhante quando a diferenca de percursos dpticos da luz proveniente das duas fendas
é um multiplo do comprimento de onda: A = pA, sendo p um inteiro. Diferenciando a relagao anterior, tem-se que

0\ = 0p. Colocando-se um filme de espessura d em frente de uma das fendas, a diferenca de percursos 6ticos varia de
OAN=dn-1). ¢Y)

Atendendo a que a introdugdo desse filme produz um desvio de cinco franjas no padrdo de interferéncia,
tem-se dgp =5, pelo que OA =d(n—1) =51 . Desta relacao tira-se o resultado para a espessura do filme:

dzi:6um (2)
n-1

PR 8.5. Encontre o angulo 6 entre os dois espelhos de Fresnel, supondo que a sua intersec¢do se encontra a
distincia R =2 m da fonte e a distancia d = 4 m do plano de observa¢io, enquanto o comprimento de onda da luz

é 4 =600nm e o espacamento entre as franjas brilhantes consecutivas é de 2 mm.

Resolucio
Como foi visto na seccdo 3.3.2, a analise do espelho duplo de Fresnel pode ser feita de modo anélogo a

experiéncia de Young. Em particular, o espacamento entre as franjas é dado pela Eq. (3.25):

D
=2, @
V=

sendo /1 0 espacamento entre as duas fontes virtuais, S, e S,, obtidas pela intercessdo dos raios provenientes da
fonte real S e reflectidos nos dois espelhos, enquanto D é a distancia entre o plano das fontes virtuais e o plano de

observacdo. A geometria da Fig. 3.3 permite escrever as relacoes:

h=26R 2
D=R+d 3)

Usando as Eq.s (1)-(3), tem-se

o= R+ (4)
2RAy

Substituindo os valores indicados, obtém-se o resultado:

g (2+4)(600x10°)
T 2(2)(2x107)

=4.5x10*rad (5)

89



PR 3.6. Considere o padrao de interferéncia correspondente as trés fendas, de igual largura, representadas na
figura 3.17.

a) Obtenha uma expressao para a distribuicao da intensidade em fun¢io do angulo 6 e obtenha a intensidade
para @ =(Qrad.
b) Determine o angulo 6 =6, # 0 correspondente primeiro maximo adjacente ao maximo central.

c) Relacione a intensidade para § =g, /2 com a intensidade para §=0.

Figura 8.17 - Interferéncia usando plano com trés fendas.

Resolugao

a) Pelo principio da sobreposi¢ao, o campo resultante num ponto do plano de observacao é dado pela soma
dos campos devidos a cada uma das fendas:

E=E+E,+E,. @

Os campos E|, E, e E; diferem entre si apenas devido a diferenca de percursos épticos desde cada uma
das fendas até ao ponto de observagdo. Sendo E, o campo devido a fenda superior, pode-se escrever:

E=E, +E, exp(i&)+ E, exp(i55/2) 2

onde

0 = kd sen 6. (3
A intensidade no ponto de observacao é dada, a menos de um factor constante, por

1(0) =EE * = E[3+ 2{cos(5) + cos(35 / 2) + cos(55 / 2)}] (4)
Para 0 =0, tem-se 6 =0, pelo que

1(0)=9E? (5)

b) Verifica-se da Eq. (4) que o primeiro méximo lateral acontece para 6 = 4z . O angulo correspondente
obtém-se da Eq. (3):

Hz@,zsené’]:% (6)

¢) O angulo@ =6, /2 corresponde a 6 =27, sendo a intensidade dada por:

1(6,/2)=E} =1(0)/9 @)

PR 3.7, Duas laminas rectangulares e finas de vidro estdo em contacto ao longo de uma das suas arestas, enquanto

que no lado oposto se interpos um separador de 5 pm de espessura. Os indices de refrac¢do das laminas superior
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e inferior sdo, respectivamente, 1.5 e 2.0. Observa-se franjas de interferéncia quando se faz incidir luz com
comprimento de onda 4 = 500 nm normalmente as placas.
a) Quantas franjas sao observadas existindo ar entre as placas?

b) E se existir 6leo com um indice de refrac¢do n = 1.8 entre essas placas?

Resolugao
a) Havendo ar entre as placas e atendendo a relacdo entre os indices de refrac¢do que definem o filme em

causa (1.5 > 1.0 < 2.0), a condi¢do para haver uma franja escura no ponto de observacao é:

47m,

o= dcos6, = p2rx ®

0

onde n, =1.0 e @ =0rad para uma incidéncia normal. Considerando a espessura do filme na posi¢do do

separador (d = 5 um), tem-se:

p=—"-=20 (2)

Considerando que para d = 0 pm se tem igualmente uma franja escura, conclui-se que existem 21 franjas

escuras e 20 franjas brilhantes.

b) Havendo 6leo entre as placas e atendendo a relagao entre os indices de refraccao que definem o filme em

causa (1.5 < 1.8 <2.0), a condi¢io para haver uma franja brilhante no ponto de observacao é:

5= 4/m,

dcos6, = p2rx 3

onde n, =1.8. Usando 6, =0 rad e a espessura do filme na posicao do separador (d = 5um), tem-se:

2n,d
p=""22 236 (4)
A
Considerando que para d = 0 um se tem igualmente uma franja brilhante, conclui-se que existem 37 franjas

brilhantes e 36 franjas escuras.

PR 3.8. Um filme dieléctrico de faces paralelas e com indice de refrac¢do n, =1.5, situado no ar, é iluminado por
luz com um comprimento de onda A =565.7 nm, que incide nele segundo um angulo de 30°. Qual a espessura

minima do filme que permite obter uma franja brilhante no padrao de interferéncia formado pela luz reflectida?

Resolucio
Dada arelaco entre os indices de refrac¢do que definem o filme (1.0 < 1.5 > 1.0), a condi¢do para haver uma
franja brilhante no ponto de observacio é 0'= p27 , sendo ', dado pela Eq. (3.36). Para se ter uma espessura

minima do filme, deve ser p = 0, pelo que se tem a condicdo

5‘=0:47m2dcosﬁ,—7z @
Ou seja:
-t @
4n, cosd,
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Usando a relacao

cos6, = 4/1—sen’ 6, 3

e alei de Snell para a refraccio, send; = n, send, , tem-se

A

4/n: —sen’ 6, ()

Substituindo os valores dados, obtém-se o resultado:

d:

565.7x107

d=—————-=0.1um (5)
4\/1.52 —sen?30°

PR 3.9. Uma lente biconvexa com um raio de curvatura R encontra-se pousada sobre uma superficie plana,
sendo iluminada na normal com luz de comprimento de onda 4. O espaco entre a lente e a superficie plana é
preenchido com um liquido com indice de refrac¢do n, = 1.4. Qual é a razdo entre os raios do 20° anel escuro antes
e depois da introducao desse liquido?

Resolucio

O raio do anel escuro da ordem p é dado pela Eq. (3.43). No caso de o espaco entre a lente e a superficie
plana ser preenchido por ar (n, =1), tem-se

X, = PAR €Y)

Depois da introducao do liquido, com um indice de refraccdo #,, o raio do mesmo anel passa a ser

PAR (2)

n

X

pl =

Dividindo membro a membro as Eq.s (1) e (2), tem-se

Xpa _ ﬂ :\/’TI: 1.18 3)
X, PAR/n,

Ou seja, a razdo entre os dois raios é dada por ./#, , independentemente da ordem do anel, do raio

de curvatura da lente e do comprimento de onda da luz utilizada. Com a introdu¢do do liquido, um anel de

interferéncia com determinada ordem diminui o seu raio.
PR 8.10. Tendo em consideragio as Eq.s (3.58) e (3.60), obtenha os valores maximo e minimo das intensidades
correspondentes aos feixes transmitido e reflectido.

Resolucao

Da Eq. (3.58) vé-se que a intensidade do feixe transmitido, /, , ¢ maxima quando & =27p , tendo-se:

(1) =1 o
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Nestas condigdes, I assume um valor minimo:

Por outro lado, /, é minimo e /, é maximo para ¢ =(2p +1)7, tendo-se entao:

A Ul 3)
(It)mm It (1+r2)2
e
_ 452
(Ir)max =1 (1+r2)2 (4)

PR 3.11. Introduz-se uma lamina transparente com um indice de refraccio n e espessura L num dos bracos
do interferémetro de Michelson, perpendicularmente ao feixe. Determine o deslocamento que deve ser dado
ao espelho de modo a que o sistema de franjas no plano de observacdo permaneca igual ao existente antes da

introducio dalamina.

Resolugao

Aointroduzir-se alamina, o percurso éptico correspondente a sua espessura passade 1L paranL. Atendendo
a que esse elemento do percurso é percorrido duas vezes, tem-se que a alteracdo do percurso 6ptico resultante
da introducdo da lamina é 2(n—1)L. Em ordem a compensar esta variacdo do percurso optico, o espelho deve

deslocar-se de Ad , tal que,
2Ad =2(n-1)L, €y
ou seja,

Ad =(n-1)L (2)

PR 3.12. Ajusta-se um interferometro de Michelson de modo a obter-se um padrio de franjas circulares
concéntricas quando ele é iluminado com uma fonte extensa de luz com um comprimento de onda 4 = 400 nm.
a) Determine o deslocamento a dar ao espelho médvel para que se verifique o aparecimento de 500 franjas
no centro do padrao de interferéncia.
b) Se a franja central for brilhante, obtenha uma expresséo para o angulo correspondente ao primeiro anel

escuro.

Resolucio
As franjas circulares concéntricas correspondem a franjas de igual inclinacao e sao observadas quando os
dois espelhos do interferémetro sio mutuamente perpendiculares. A diferenca de percurso ético entre os dois

bragos é dada por

A =2ndcos 8 ®

sendo d a diferenca de comprimento entre os dois bracos do interferémetro, n o indice de refrac¢do do meio

(n =1paraoar)e @ o angulo de incidéncia da luz nos espelhos.
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a) Para que se verifique o aparecimento de 500 franjas no centro do padrdo de interferéncia (6 =0), deve
ter-se A =2d =5004. Ou seja, o espelho movel deve deslocar-se de d = 2504 = 0.1 mm.

b) Se a franja central for brilhante, tem-se

1
2d = (p + 2}1 ,  pinteiro (2)
Para o primeiro anel escuro, tem-se
2d cosO = pA 3)
Subtraindo membro a membro as Eq.s (2) e (3), tem-se

2d(1—cos8) :% (4)

A L 0’
Dado que o valor de @ é muito pequeno, pode-se usar a aproximacao cosfd = 1— - obtendo-se o resultado:

0 ~+A/2d rad (5)

PR 5.13. Pretende-se reduzir a reflectividade de uma superficie de vidro (indice de refrac¢io 5, ) aplicando-lhe um
filme apropriado. Determine o indice de refrac¢do n, (n, < n,) e a espessura d que esse filme devera ter. Consi-

dere, para efeito de calculos, o comprimento de onda A = 550 nm, para o qual a sensibilidade da vista é maxima.

Resolucio
No sentido de reduzir a reflectividade da superficie do vidro, a luz reflectida nas interfaces ar/filme e filme/
vidro deve estar em oposi¢do de fase para que a sua interferéncia seja destrutiva. Dado que setem n,< n, < n,,

sendo 7, o indice de refraccio do ar, a espessura d do filme deve satisfazer a condicao:

2n,d :[p-i-;j/l’ »

onde p um numero inteiro. Por outro lado, para assegurar que as amplitudes das ondas reflectidas nas duas

interfaces sejam semelhantes, as reflectividades dessas interfaces devem ser iguais: R =R . Ou seja,
ar/ filme filme / vidro

deve-se ter

- (-n,) 2
ton o, f >

onde se assumiu uma incidéncia normal da luz. A condicao anterior d o resultado:

n, =qln,n, 3

Assim, substituindo o resultado anterior na Eq. (1), obtém-se que a espessura do filme é dada por

1 A
=l pel) A @)
(p 2}2 n,n,

Fazendo p = 0 e substituindo os valores n, =1.0, n, =1.5 e A =550 nm, obtém-se o resultado d = 112 nm.
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PR 3.14. Obtenha a funcio de autocoeréncia, o grau de coeréncia temporal e a visibilidade das franjas de

interferéncia, para o caso de uma onda harmoénica, dada por
E (t)=E " »

Caracterize a coeréncia desta onda harmonica.

Resolucao
A funcao de autocoeréncia correspondente a onda harménica é dada por

e . .
1_,(2_) _ ;lig? J“EO‘Ze_zwtezw(Hr)dt — [letwr (2)

-T/2
Com base na Eq. (3.88), tem-se que o grau de coeréncia temporal é dado por

@ _

y(7)= I o)

eiwr ( 3)

Neste caso, a visibilidade é

V=r)=1 (4)

O resultado traduzido pela Eq. (4) corresponde a um caso limite, em que a luz é completamente coerente.

PR 3.15. Obtenha a funcdo de autocoeréncia, o grau de coeréncia temporal e a visibilidade das franjas de
interferéncia, para o caso da sobreposi¢do de duas ondas harménicas com amplitudes iguais mas frequéncias

diferentes, traduzida por:
E(t)= E, e + E e »
Compare com o resultado dado pela Eq. (4) do problema PR 3.14.

Resolucio

Substituindo a Eq. (1) na Eq. (3.87) tem-se que a funcdo de autocoeréncia é:

712
F@= ;131-0% ] (e + Ege ™ \E,& ) + o™ Jit
/2 o
= ‘EO‘Z(eiwlT +eiwzr)

Deste modo, o grau de coeréncia temporal, definido pela Eq. (3.88), vem dado por

y(7) = % (eia)]‘r n ei(ozr) (3)

cos(a)z_wljr (4)
2

Em contraste com o resultado dado pela Eq. (4) do problema PR 8.14, verifica-se que, no caso da sobreposicao

A visibilidade é dada por

ei(qr + eia}_,r

Vﬂﬂﬂ=%

de duas ondas harmoénicas com frequéncias diferentes, a visibilidade é uma func¢ao periédica do atraso temporal .
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3.13. Problemas propostos

PP3.1. Uma lente convergente L, com um orificio circular no centro, é usada como um sistema de interferéncia de duas
ondas (Fig. 3.18). A fonte de luz S é colocada de tal modo que a onda emergente do vidro da lente é plana, enquanto
que a onda transmitida pelo orificio é esférica. O orificio tem um diametro D, enquanto que a espessura maxima da

lente é 0.

d

Figura 8.18 - Geometria incluindo uma fonte pontual S, uma lente . com um orificio circular no centro
e um plano de observagao P.

a) Escreva as expressoes analiticas das ondas que se vao sobrepor. Considere que ambas as ondas tém a
mesma amplitude no plano P, situado a uma distancia d da face de saida da lente.
b) Deduza uma expressao para intensidade no plano P em funcao da distancia r ao eixo do sistema. Qual

é a forma das franjas de interferéncia?

PP 3.2 Um ssistema 6ptico é constituido por duas camadas de um dieléctrico (1) com indice de refracgao n, = 1.4 etrés
camadas de um outro dieléctrico (2) com indice de refrac¢ao n, = 2.5, depositadas alternadamente num substrato
de vidro (n, =1.50). A primeira camada a ser depositada é do dieléctrico (2). Mostre que o sistema funciona como

um espelho de elevada reflectividade, se a espessura de cada camada for 4/4 e a incidéncia da luz for normal.

PP 3.8. Unm filme de agua (n = 4/3) de faces paralelas e com 300 nm de espessura encontra-se no ar. Se o
filme for iluminado normalmente com luz branca (A = 350 — 700 nm), qual o comprimento de onda da luz
reflectida?

PP 3.4. O diametro do sétimo anel brilhante na experiéncia dos anéis de Newton decresce desde 1.55 cm para
1.28 cm quando se introduz um liquido entre a lente e a placa de faces paralelas em que ela se apoia. Determine o

indice de refraccao desse liquido se se usar luz amarela de S6dio (A = 589.3 nm) nessa experiéncia.

PP3.5.Um filme com uma espessurad = | mm e um indice de refraccaon = 1.5 é iluminado com luz monocromatica
de comprimento de onda A = 600 nm. Observa-se entdo um padrao de franjas circulares de Haidinger. Determine

o valor de p para a franja central (g, = 0) e diga se essa franja é clara ou escura.

PP 3.6. Considerando a sobreposicao de todas as ondas reflectidas na Fig. 3.14, obtenha a intensidade do campo
reflectido resultante. Mostre que o resultado ¢ igual ao obtido a partir das Eq.s (3.58) e (3.60).

PP3.7.Um biprisma de Fresnel é iluminado por luz com comprimento de onda 4 = 500 nm, proveniente de uma
fonte pontual situada a uma distancia de 20 cm. As franjas de interferéncia sdo observadas num ecra situado
a 80 cm do biprisma. Considerando que o biprisma tem um angulo « =3° e um indice de refrac¢io n = 1.5,

determine o espacamento entre franjas consecutivas.
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PP 3.8 Mostre que o espacamento / entre as fontes virtuais S, e S, no biprisma de Fresnel (Fig. 3.4) é dado por

h=2s(n—1ea, sendo s a distancia entre o plano das fontes e o biprisma e a o angulo de cada um dos prismas.

PP3.9. A figura 3.19 ilustra uma experiéncia realizada com o espelho de Lloyd. A fonte pontual S, situada a uma
distancia 4 do espelho AB (I = 30 cm) emite, em todas as direcgdes, luz com comprimento de onda A = 500 nm.
Tem-se d = 1 cm e supde-se /4 « d.

P

I
I
|
|
|
|
i

>

HHA

B

Figura 3.19 - Geometria para o espelho de Lloyd.

a) Exprima, em funcdo dos parametros geométricos e Opticos do sistema, o espacamento entre franjas
sucessivas, bem como a extensido do campo de interferéncia (medida na perpendicular ao espelho AB).

b) Forma-se uma imagem de P com a ajuda de uma lente convergente com uma distancia focal de 8 cm,
situada a 10 cm de P. O espacamento entre franjas no plano imagem é de 1 mm. Deduza o valor de / e o nimero

de franjas brilhantes observadas.

PP 3.10. A saida de um interferémetro de Michelson, iluminado por uma fonte extensa de luz com comprimento
deonda A, o feixe emergente é recolhido por uma lente delgada de distancia focal f. No plano focal imagem dessa
lente sdo observados anéis de interferéncia. Mostre que a area da coroa circular, compreendida entre dois anéis

brilhantes consecutivos, é constante, sendo independente da ordem desses anéis.

PP3.11. Em cada um dos bracos de um interferémetro de Michelson é colocado um tubo com 10 ¢cm de comprimento,
em que se fez o vacuo. O interferémetro é iluminado com luz amarela de s6dio (4 = 589.3 nm) e alinhado de modo
a observar-se franjas de igual inclinacao. Quando se introduz ar num dos tubos, verifica-se a passagem de 20 franjas
por um dado ponto do plano de observacio. Determine a pressao do ar nesse tubo. Considere que o indice de

refraccéio do ar, 7, se relaciona com a pressdo, P, na forma n = kP, onde k = 3x10* atmos .

PP 3.12. Um interferémetro de Fabry-Perot tem uma finesse ® = 40000 e uma separacgdo entre os espelhos
d =4 cm. O espaco entre os espelhos é preenchido por ar. Calcule o coeficiente de reflexdo r dos espelhos, a banda

espectral livre (AA4),,;, alargura de uma linha espectral y e o poder de resolucao cromatica ¥ do interferémetro.

PP 3.18. Um interferometro de Fabry-Perot é constituido por uma cavidade de ar (n = 1), limitada por duas
superficies com um coeficiente de reflexdo » = 0.95, separadas de 2 cm. Considerando um comprimento de
onda /4 = 500 nm, determine a ordem méxima de interferéncia, o coeficiente de finesse, o intervalo minimo de

resolucao de comprimentos de onda e o poder de resolucdo cromatica.

PP 3.14. Determine o comprimento de coeréncia e o tempo de coeréncia da luz branca, cujo espectro esta

compreendido entre os comprimentos de onda 780 nm (cor vermelha) e 390 nm (cor violeta).

PP 3.15. Obtenha o resultado dado pela Eq (3.85) para a visibilidade de um padrio de franjas de interferéncia.
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Capitulo 4

DIFRACCAO

O fenémeno de difracgio ocorre sempre que a fase ou a amplitude de parte da frente de onda se altera, apds
a interac¢ao com algum obstaculo, transparente ou opaco. Na realidade, ndo existe uma diferenga substancial
entre interferéncia e difraccao, sendo a distingdo entre os dois fendmenos de certo modo arbitraria. Fala-se
habitualmente em interferéncia quando se considera a sobreposi¢ao de um nimero reduzido de ondas, enquanto
que o termo difracgéo é aplicado nos casos em que o nimero de ondas interferentes é elevado.

A descric@o rigorosa do fenémeno da difraccdo baseia-se nas equacoes de Maxwell e na consideracao
das condicoes de fronteira associadas com o obstaculo em causa. Contudo, a aplicacdo dessa teoria revela-se
geralmente uma tarefa complicada, pelo que em muitos casos se torna conveniente utilizar uma teoria escalar
aproximada. Esta teoria aproximada é baseada no chamado principio de Huygens, segundo o qual cada ponto
de uma dada frente de onda pode ser considerado como uma fonte de ondas esféricas elementares, com a mesma
Srequéncia da onda primdria. A amplitude do campo optico em qualquer ponto do espago num momento posterior
¢ dada pela sobreposicdo de todas essas ondas elementares.

A utilizacao desta teoria escalar resulta no chamado integral de difrac¢do. Pode-se obter solucoes analiticas
para este integral recorrendo a duas aproximacoes diferentes. Numa das aproximagdes, considera-se que o plano de
observacao e a fonte de luz se encontram muito afastados do local de obstrucao da frente de onda, tendo-se entdo a

chamada difraccdo de Fraunhofer. Quando essas condigdes nao se verificam tem-se a chamada difraccio de Fresnel.

4.1. O integral de difracgao

Considere-se um orificio num ecra iluminado por uma onda plana, dada por:

E,(F,t) = E;(F)e' (4.1)

A onda emergente do orificio é uma onda esférica, cuja amplitude complexa se pode escrever na forma:
EF) =C e (4.2)

7

onde C é uma constante, proporcional a amplitude da onda incidente, E;, e a drea do orificio, As .
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Considere-se a Fig. 4.1, que ilustra o caso em que hé dois orificios: um situado em P, a uma distancia

Ty = "’0 - ”1‘ do ponto de observagio P, e outro situado em P,, a uma distancia 7, = ""0 _”2‘ de P;. O campo
em P devido ao orificio Pj G=12)é:

E; (7))

Toj

E;(7)=0, Ny (4.3)

onde Q; € uma constante, conhecida como factor de obliquidade, que depende do angulo, @, entre 7 jea

normala As; . Essa dependéncia com o angulo ¢ pode ser traduzida na forma

0(p) = 0(0) H25®) ”C"S“") (4.4)

Deste modo, verifica-se que o factor de obliquidade é maximo para ¢ =0 e que se anula para @ =7 rad,

traduzindo assim o facto de a onda proveniente do orificio ndo se propagar para tras, no sentido da fonte.

Pﬂ(ﬁ]}

Figura 4.1 — Geometria para a aplicacao do principio de Huygens ao caso de dois orificios.

O campo total em P é dado pela sobreposi¢ao das ondas provenientes de P, e de P, :

E(ry) = E\(1y) + Ey (1) (4.5)
No caso de se ter N orificios, a Eq. (4.5) € generalizada na forma:

E,(7)

0/

E(fy) = ZE G e s, (4.6)

No limite em que As; tende para zero, o orificio converte-se numa fonte elementar de Huygens, com uma
area elementar ds. Pode-se considerar qualquer abertura como um conjunto destas fontes elementares e converter
o somatério da Eq. (4.6) num integral. Neste processo, 7 ; € substituido por R, que indica a posicdo da fonte
elementar de Huygens relativamente ao ponto de observacio P, e 17] é substituido por 7, que indica a posi¢ao
dessa mesma fonte elementar relativamente a origem do sistema de coordenadas. Por outro lado, atendendo a
que o factor de obliquidade Qj varia lentamente com o angulo formado entre 7 ; eanormala As j»pode-se tratar
este factor como sendo uma constante, Q. Nestas circunstancias, a Eq. (4.6) converte-se na seguinte expressio:

E(F)

EG)=0ff = e s @.7)

Este resultado constitui o chamado integral de difraccdo e mostra que o campo em P pode ser encarado
como o resultado da sobreposicdo das multiplas ondas elementares emitidas pelos orificios imaginarios que

compOem a abertura X . Esta é a esséncia do principio de Huygens.
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A grandeza do factor de obliquidade pode ser encontrada comparando o resultado obtido a partir da Eq. (4.7)

com a previsao da dptica geométrica para o campo no ponto de observacao. Mostra-se no problema PR 4.1 que

i
0=7 (4.8)
onde A é o comprimento de onda da luz.

O facto de o integral de difrac¢do, dado pela Eq. (4.7), exprimir o campo E(7;) na forma de um integral
sobre a abertura ¥ permite obter um resultado bastante importante, que corresponde ao chamado principio de
Babinet. Segundo este principio, que se demonstra no problema PR 4.2, a distribuicao da intensidade do padrao
de difraccdo devido a um objecto opaco é igual a distribuicdo da intensidade do padrio de difraccao produzido

por uma abertura com a mesma forma e dimensoes desse objecto.

4.2. Difracgao de Fraunhofer

Nadifrac¢do de Fraunhofer requer-se que, tanto a fonte de luz como o ponto de observacao, estejam bastante
afastados da abertura, de modo a que se possa considerar que, tanto a onda incidente como a onda difractada,
s@o constituidas por ondas planas. Partindo da Eq. (4.7) e considerando a geometria da Fig. 4.2, mostra-se no

problema PR 4.3 que o campo difractado no ponto de observacdo P, (xp 2y, ) é dado por:

Figura 4.2 — Geometria para o estudo da difrac¢gdo de Fraunhofer por uma abertura arbitraria.

B [ xx, oy,
E,= AJ]Z exp|:lk [Roj:|dxdy (4.9)
onde
OF, _ik
A — ! 0
i e (4.10)

Na obtencao da Eq. (4.9) considerou-se que |R0 —R| << R, e x* +y* << 2R, sendo R a distancia entre

os pontos P(x, y) e P, (xp 2V, ) e R, adistancia entre o centro da abertura, de coordenadas (0,0), € 0 mesmo ponto

Py(x, . »,).
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O resultado dado pela Eq. (4.9) satisfaz a chamada condi¢do de Fraunhofer, segundo a qual a fase do campo
deve ser uma funcéo linear das coordenadas da abertura, sendo o campo difractado constituido por um conjunto

de ondas planas.

No caso de a abertura estar coberta por um filme com uma funcéo de transmissio f{,y), o campo E, na
Eq. (4.7) deve ser substituido por f{x, y)E,, que representa o campo transmitido por esse filme. No caso geral, a
funcao f{x,y) é complexa, traduzindo as variagdes de amplitude e de fase sofridas pelo campo incidente no filme.

Nestas circunstancias, a Eq. (4.9) pode ser generalizada e apresentar-se na forma

Ep= AJ] . f(x,y) expl}'k [Wjﬂdxdy

0

= AJ].2 f(x,») exp[i(kxx + kyy)}lxdy (4.11)
onde k.= kx /R, k =ky [R,

As integragoes na Eq. (4.11) podem ser realizadas entre —oo e + oo, assumindo-se nesse caso que a funcao
de transmissao f{x,y) é estendida de tal maneira que se anula fora da regido da abertura. Deste modo, pode-se
concluir da Eq. (4.11) que o padrao de difrac¢do de Fraunhofer para a amplitude do campo eléctrico é proporcional

a transformada de Fourier bi-dimensional da fungédo de transmissdo da abertura.

4.2 1. Difraccao por uma fenda simples

Consideremos o caso de uma fenda simples, com uma largura a, centrada na origem e paralela ao eixo dos

¥, com um comprimento b, tal que b»A. A funcao de transmissao é dada por

1, |x|£a/2/\|y|Sb/2

(4.12)
0, |x|>a/2v|y|>b/2

S p) = {
O campo difractado pode ser obtido substituindo a Eq. (4.12) na Eq. (4.11). Mostra-se no problema PR 4.4
que a luz se espalha predominantemente no plano xz, sendo a distribui¢do da intensidade dada por:
2

sen- o
a2

(4.13)

=1, =Iosencza'

Na Eq. (4.13), I € o valor maximo da intensidade e o = kaxp/ 2R, = (ka / 2)send, sendo senf) = X, /R, .

A funcao

sen(w)

senc(w) = (4.14)

é conhecida como a funcdo seno cardinal. Na Fig. 4.3 mostra-se os graficos das func¢des senc(w) e senc’(w). A

funcdo senc(w) assume o valor maximo senc(w) = 1 para w = 0 e apresenta zeros para

wW=mr (4.15)

sendo m um nimero inteiro diferente de zero. A dimensdo do padrio de difracgdo pode ser caracterizada pelo

primeiro zero (m = *1), podendo-se verificar que essa dimensao é tanto maior quanto mais estreita for a fenda.
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LY o
1\ senc” (w)

Figura 4.3 — Representacio grafica das funcdes senc(w) e senc?(w).

4.2.2. Difracgao por varias fendas

Considere-se um conjunto de N aberturas idénticas, distribuidas ao longo do eixo dos x, sendo f{x) a fun¢io
de transmissao da abertura situada na origem do eixo. De acordo com a Eq. (4.11), o padrao de difrac¢do produzido
por esse conjunto de aberturas é dado pela transformada de Fourier da correspondente fun¢ao de transmissao,

mostrando-se no problema PR 4.6 que essa transformada é dada por:

G(k,) = F{f(x)}F{D(x)} (4.16)
onde
N
D(x)=) 5(x-x,) (4.17)
n=1

Na Eq. (4.16), F indica a transformada de Fourier, enquanto na Eq. (4.17), J é a funcao delta de Dirac e

x, € aposi¢ao da n-ésima abertura.

A Eq. (4.16) traduz o chamado teorema matricial, segundo o qual o padrao de difraccao determinado por
uma dada distribui¢do de aberturas idénticas é igual ao produto do padrao de difrac¢do devido a uma so dessas
aberturas pelo padrao de difraccao correspondente a um conjunto de_fontes pontuais com a mesma distribuiciao
espacial da rede de aberturas.

O teorema matricial pode ser utilizado para calcular o padrao de difraccdo produzido por N fendas
idénticas, paralelas ao eixo dos y, cada uma com largura a e espagadas entre si de d. Nestas condi¢oes, tem-se
x = (n—1)d.Adistribuicio de intensidade correspondente a uma dessas fendas ¢ dada pela Eq. (4.13). Por outro

lado, tem-se

F{D(x)} =22 ]\;ﬁ (4.18)
sen
onde
kd
p= 7sen6’ (4.19)
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Usando o teorema matrical, a distribui¢do de intensidade no padréo de difraccao correspondente as N

fendas é dada por:

sen’a sen*Nf

a’  sen’p

(4.20)

I1=1,

2 2
Na Eq. (4.20), o factor 51! - @ ¢ conhecido por fuctor de forma, enquanto que o factor S€1 Np , resultante
2
a sen”

da interferéncia entre a luz proveniente das diferentes fendas, é conhecido por factor da rede.

Um dispositivo com multiplas fendas, como o que foi considerado anteriormente, constitui um exemplo
de uma rede de difrac¢do. Em geral, esta designacdo aplica-se a qualquer estrutura periddica constituida por
elementos difractivos, sejam eles aberturas ou obstaculos, susceptivel de alterar a amplitude e/ou a fase de uma
onda nela incidente. A rede de difraccao mais comum ¢é constituida por varios milhares de estrias paralelas,

desenhadas na superficie de uma lamina de vidro.
Quando se tem apenas duas fendas, a Eq. (4.20) pode ser apresentada na forma

(4.21)

sena

Quando a largura das fendas (a) tende para zero, entao ~1 e a Eq. (4.21) representa a intensidade

a

devida a um par de fontes lineares, como se considera na experiéncia de Young.

Se, por outro lado, for d = 0 (as duas fendas coincidem), entdo =0 e a Eq. (4.21) reduz-se a Eq. (4.13), que
da a difrac¢do por uma fenda simples. Pode-se, portanto, considerar que a Eq. (4.21) para o caso de duas fendas é

gerada por um termo de interferéncia, cos’§f , modulado por um termo de difracgo, (sen’a)/ o? .

4.2.3. Difracgao por uma abertura circular

No caso da difraccao por uma abertura circular, torna-se conveniente para efeitos de calculo dos integrais
na Eq. (4.11) usar coordenadas polares, tanto no plano da abertura como no plano de observagio. No plano
da abertura, considera-se x = rcos¢ e y = rsen¢, tendo-se uma area elementar dada por rdrd¢ . No plano de
observacdo tem-se x =r.cosf e y =rsend.

44 0 V4 0

Considerando que a abertura tem um raio « e que a sua fungo de transmissao é f{r,d) =1 (r<a, 0< ¢ <2nx),

a Eq. (4.11) assume o aspecto:
2

E,= AI Jexp —ik ’;’:)cos(ﬁ—¢)rdrd¢} (4.22)
00 0

O integral da Eq. (4.22) pode ser calculado analiticamente em termos das funcoes de Bessel, obtendo-se o

seguinte resultado para a intensidade no plano de observagao:
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(4.23)

2
-1t

(kar,/ R,)

onde J, (1) é a funcdo de Bessel de primeira espécie de ordem 1 e S é a area da abertura circular. Considerando que

lin&(] W)/ u) =1/2,tem-se que a intensidade no centro do padrao de difracgdo é /= |4 S>.

u

u

2
Na Fig. 4.4 representam-se as funcoes M e |:2Jl(u):| .

Figura 4.4 - Representacio das funcbes 2J,(u)/u (curva a cheio) e [2J,(u)/u] (curva a tracejado).

O padrio de difrac¢io descrito pela Eq. (4.23) é conhecido por padrdo de Airy, sendo constituido por um
disco central brilhante e por um conjunto de anéis concéntricos, alternadamente escuros e brilhantes. O raio do

primeiro anel escuro é habitualmente usado para caracterizar o tamanho desse padrao de difrac¢io e é dado por:

Ry
2a

r, =12 (4.24)
Estes resultados sdo de grande importancia pratica. Deve notar-se, por exemplo, que a imagem de uma
fonte pontual, formada por um sistema 6ptico ideal, constituido por espelhos ou lentes circulares, tem o aspecto

de um padrao de Airy.

4.3. Difracgao de Fresnel

A difraccdo de Fraunhofer, produzida por uma dada abertura, verifica-se quando ela é iluminada por ondas
planas e o ponto de observacao se encontra bastante afastado dessa abertura. Nestas circunstancias, tem-se que
a fase do campo difractado varia linearmente com os parametros da abertura. Nesta seccao considera-se que ou
a fonte ou o plano de observagio, ou ambos, se encontram relativamente proximos da abertura, pelo que sera

necessario ter em devida conta a curvatura da frente de onda.
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Os padroes de difraccao de Fresnel podem entender-se na continuidade entre dois casos extremos: os
padrdes correspondentes a Optica geométrica, por um lado, e os padrdes da difrac¢do de Fraunhofer, por outro.
Na éptica geométrica supde-se que a luz se propaga ao longo de trajectérias rectilineas, sendo por isso de esperar
poder observar-se uma imagem nitida da abertura no plano de observacio. Na pratica, observa-se uma imagem
deste tipo apenas se a distancia entre o plano de observagio e o plano da abertura for bastante curta. Na difrac¢ao
de Fraunhofer, em que essa distancia deve ser efectivamente muito grande, a imagem corresponde a um padrao de
franjas que nao tem qualquer semelhanca aparente com a forma da abertura. A difraccao de Fresnel corresponde
a uma situacdo intermédia. Neste caso, a imagem observada é essencialmente uma imagem da abertura, embora

0s seus contornos nao sejam nitidos e apresentem franjas.

4.3.1. Propagacao livre de uma onda esférica

Considere-se uma frente de onda esférica proveniente de uma fonte pontual situada em P, e que no instante
¢t tem um raio R /> como se representa na Fig. 4.5. Com o objectivo de determinar o campo no ponto de observagao
P, devido a esta frente de onda, considera-se um conjunto de superficies esféricas de raios R =R, R + A2,
R,+24/2, .., R,+ jA/2,.. sendo R a distancia entre a frente de onda e o ponto P, medida sobre a linha que liga
P, e P,. Estas superficies esféricas dividem a frente de onda num certo ntimero de zonas com a forma de anéis,

chamadas zonas de Fresnel.

Figura 4.5 — Geometria para a construcio das zonas de Fresnel correspondentes a uma onda esférica.

Mostra-se no problema PR 4.10 que o campo no ponto de observacao P devido apenas a zona de Fresnel
definida entre R = R +jA/2 e R =R+ (j— 1)A/2 é dado por:

COQ.E A
E,(R)=2i(-1)’ OE vinm) (4.25)
Rf+R0

A alternancia de sinal do campo correspondente a zonas de Fresnel consecutivas deve-se a diferenca de
fase entre as ondas provenientes dessas zonas, uma vez que a distancia de propagagao para pontos similares de
zonas adjacentes difere precisamente de 4/2. Deste modo, as contribui¢des para o campo no ponto P, devidas a
zonas adjacentes tendem a anular-se entre si. Contudo, esse cancelamento nio é perfeito, dado que o factor de

inclinacgdo varia, ainda que ligeiramente, de zona para zona.
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Tendo em consideracio a alternéncia do sinal, o campo total no ponto P, devido a N zonas de Fresnel é

dado a partir da Eq. (4.25) por:
|E| = ||~ |Es| +]Es| = £ |Ey| (4.26)

Os elementos do somatério na Eq. (4.26) podem ser reagrupados na forma:

E E E E E
‘E‘=H+ M—\Ezhﬁ n M_‘E4‘+H oo (4.27)
2 2 2 2 2
Atendendo a que a variagdo do factor de inclina¢do de uma dada zona para as adjacentes é desprezavel,
pode-se considerar que cada um dos parénteses na Eq. (4.27) é nulo. Nesta aproximagao, considerando que o
factor de inclinagdo para a ultima zona de Fresnel (correspondente a ¢ = 7 ) é nulo, tem-se da Eq. (4.27) que

|E|~ @ (4.28)

2
Esteresultado, surpreendentemente simples, mostra que o campo total no ponto de observagdo P, , produzido

por uma onda esférica ndo obstruida, é igual a metade da contribuicio devida a primeira zona de Fresnel.

4.3.2. Difracgao por aberturas ou obstaculos circulares

A analise realizada na sec¢ao anterior pode ser facilmente aplicada ao caso da difraccdo de Fresnel por
aberturas circulares. Considerando um ponto de observacio P, sobre o eixo da abertura e assumindo que esta se
encontra inteiramente preenchida por um ntimero inteiro, N, de zonas de Fresnel, sdo possiveis duas situacgoes.

Se N for par, tem-se:

E= QEI‘ _‘Ez‘)+qE3‘ _‘E4‘)+~-+ QEAH\ _‘EN‘) =0 (4.29)

dado que as contribuicoes adjacentes sdo praticamente iguais em moédulo. Por outro lado, se N for impar, tem-se:

E = (BB~ (B = 2] (480

Este resultado pode parecer surpreendente, quando comparado com o da Eq. (4.28). De facto, verifica-se
que a interposicao de um ecra opaco e apenas com um pequeno orificio, apesar de bloquear quase completamente
a frente de onda, faz com que a intensidade em P quadruplique o seu valor comparativamente com a situagao de
propagacao livre da onda! Obviamente, o principio da conservagido da energia exige que exista outros pontos em
que a intensidade tenha diminuido. Dada a simetria da configuracéo, é de esperar neste caso que se observe, num

plano perpendicular ao eixo da abertura, um padrao de franjas circulares.
Ondas planas
Na discussao anterior considerou-se que a onda incidente na abertura era uma onda esférica. No caso de

a onda incidente ser uma onda plana, a anélise do problema torna-se mais simples. Nesta situa¢io, as zonas de

Fresnel correspondem a anéis planares definidos no plano da frente de onda.
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Usando a defini¢do dada na Seccio 4.3.1 para as zonas de Fresnel e o teorema de Pitagoras, tem-se que o

raio da n-ésima zona, 7, , se relaciona com a distancia R entre a abertura e o ponto de observacio na forma

2\
rn2 = (RO + nj - Rg (4.31)
2
ou seja:

2/2
rn2 =niAR,+ n® 7 (4.32)

Para valores nao muito elevados de n, pode-se desprezar o segundo termo na Eq. (4.32), obtendo-se entao

o resultado:
r= m (4.33)

Verifica-se da Eq. (4.33) que, para um dado ponto de observacio no eixo da abertura, os raios das zonas de

Fresnel sdo proporcionais a raiz quadrada de niimeros inteiros.
Obstaculos circulares

No caso de se ter um obstaculo opaco com forma circular, e assumindo que ele bloqueia as primeiras /

zonas de Fresnel, o campo num ponto P do seu eixo serd dado por:
E=|E |~ |Epo|+.+|Ey] (4.34)

Como se referiu antes, tem-se E, =0, porque Q) — 0. A soma (4.34) pode ser calculada como se fez na

Seccao 4.3.1, obtendo-se:

Ep
E~ [Er| (4.35)
2
Ou seja, verifica-se a existéncia de uma mancha brilhante no eixo do obstéculo, o que constitui um resultado
de todo imprevisto pela 6ptica geométrica. A mancha em causa é conhecida por mancha de Poisson, precisamente
em homenagem ao cientista francés que considerava ridicula a hipdtese da sua existéncia. A intensidade dessa

mancha € apenas ligeiramente inferior & da onda nao obstruida.

4.3.3. Placas zonadas

A analise feita nas sec¢bes anteriores. mostrou que as contribuices das zonas de Fresnel adjacentes tendem
a anular-se umas as outras. Este facto sugere que a intensidade no ponto de observagao pode ser significativamente
aumentada, bloqueando alternadamente as zonas de Fresnel. Por exemplo, se se bloquear as dez primeiras zonas pares,
deixando passar apenas as primeiras dez zonas impares, tem-se que o campo no ponto de observagio sera £~ 10E..
Tendo em consideracio que o campo nesse mesmo ponto devido a onda ndo obstruida éigual a £ /2, verifica-se que esta
técnica permitira, neste caso, aumentar a intensidade no ponto de observacdo 400 vezes! Um dispositivo construido
com este objectivo, apresentando anéis alternadamente opacos e transparentes, designa-se por placa zonada.

Considerando a geometria da Fig. 4.6, mostra-se no problema PR 4.12 que o raio r, da n-ésima zona de

Fresnel se relaciona com as distancias Zf e Znaforma
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Figura 4.6 — Geometria para o desenho de uma placa zonada.

L1 nd (4.36)
VA VA 2
f T

Verifica-se da Eq. (4.36) que, uma vez definidas as posic¢oes da fonte e do ponto de observagao (Z e Z fixos),
os raios, 7, das zonas opacas usadas para bloquear a luz sdo proporcionais a raiz quadrada dos ntimeros inteiros,

n. Na Fig. 12.3 encontra-se representada uma placa zonada com 14 zonas de Fresnel.

Figura 4.7 — Aspecto de uma placa zonada de Fresnel

O aspecto da Eq. (4.36) mostra que uma placa zonada devera funcionar de modo semelhante a uma lente

delgada, tendo uma distancia focal dada por:

ol (4.37)

Apesar da semelhanca apontada, existem algumas diferencas significativas entre uma placa zonada e uma
lente convencional. De facto, deve ter-se presente que o funcionamento da placa zonada se baseia no fenémeno da
difraccdo da luz, enquanto o funcionamento de uma lente convencional se baseia na lei da refrac¢do. Pode notar-
-se da Eq. (4.37), por exemplo, que uma placa zonada se caracteriza por uma aberracao cromatica significativa.

A distancia f dada pela Eq. (4.37), cada anel da placa zonada encontra-se preenchido exactamente por
uma zona de Fresnel da frente de onda plana, tendo-se nesse ponto um maximo principal da distribui¢ao da
intensidade. A essa distancia f chama-se distancia focal de primeira ordem da placa zonada. De facto, contrastando
com o que acontece com as lentes convencionais, no caso de uma placa zonada verifica-se a existéncia de outros
pontos focais de ordem superior, a distancias f73, /5, /77, ... dessa placa. A distancia f/3, por exemplo, corresponde
a situacdo em que cada anel da placa zonada é preenchido por trés zonas de Fresnel. Os campos devidos a duas

destas zonas cancelam-se mutuamente, restando entdo a contribuicao da terceira zona.
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4.3.4. Difracgao por uma abertura rectangular

Considere-se o esquema da Fig. 4.8, onde se assume que uma abertura rectangular situada no plano
(x,y) é iluminada por uma onda esférica E,- =(E,/ Rf)exp(—il; ‘R ), originada numa fonte pontual situada em
(xf Vs Z f). Partindo da Eq. (4.7) e considerando o factor de obliquidade como uma constante, mostra-se no

problema PR 4.15 que o campo no ponto de observagao P, (xp 2V, Z ) pode ser apresentado na forma:

Yr

N\

Figura 4.8 — Geometria para a analise da difraccao de Fresnel por uma abertura rectangular.

By =2 BlC@-S@ECo)-iS 0] (438
onde

0] 713'2
Cw)= !cos{z}ds (4.39)

1] 2
S(w) = J.sen %
0

ds (4.40)

sao0 os chamados integrais de Fresnel,

u=(x- xs)\/m , (4.41)
v=(y-y, )\/W , (4.42)

x,=(Zyx,+Zx )/ D , (4.43)
ye=(Z;y,+2Zy )/ D (4.44)

e D=Z+Z,.NaEq.(4.38),
E =(E,/d)e™ (4.45)

representa o campo que existiria no ponto de observagio se ndo houvesse qualquer obstaculo, sendo d a distancia

entre a fonte e o ponto de observacao. A intensidade no ponto de observagido pode apresentar-se na forma:

110



Faof o of (4.46)

1
1,1

onde 17'12 = [C(w) —iS (W)Kz e I, é aintensidade correspondente a onda nio obstruida no ponto de observagao.
1

St
0.7

06}

0.3

01
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Figura 4.9 — Espiral de Cornu, obtida dispondo os valores de C(w) em func¢io de S(w).

Na Fig. 4.9 representa-se o grafico de C(w) em funcao de S(w). Este grafico é conhecido por espiral de
Cornu, em honra de Marie Alfred Cornu (1841-1902), que foi a primeira pessoa a usa-lo no calculo dos integrais
de Fresnel. E de notar que C(w) e S(w) sdo funcdes impares, tendo-se C(—w) = —C(w) e S(—w) = =S(w). Na
pratica, para se usar a espiral de Cornu, deve-se comecar por marcar sobre esta curva as posi¢oes dos limites w,
e w, da abertura. O resultado de cada um dos integrais na Eq. (4.38) ¢ dado pelo comprimento do vector 1712 que

une esses dois pontos,

No caso de nao haver qualquer obstrucao da frente de onda, tem-se, segundo a direc¢io do eixo dos x, que
u, = —oo (correspondente ao ponto (-0.5, -0.5)) e u, = o (correspondente ao ponto (0.5, 0.5)). O comprimento
do vector que liga esses dois pontos é V2. Segundo a direc¢do do eixo dos y obtém-se um valor igual, pelo que a

intensidade no ponto de observacio, dada pela Eq. (4.46), é simplesmente /, = /,, como seria de esperar.

4.3.5. Difraccao por uma fenda

Se em vez da abertura rectangular se tiver uma fenda longa, paralela ao eixo dos y, devera considerar-se
y, — —©o ey, — o, pelo que v, — —o0 e v, — oo. Considerando a espiral de Cornu, representada na Fig. 4.9,
tem-se que o ponto correspondente a v, — —oo tem coordenadas (-0.5, -0.5), enquanto que o ponto correspondente
a v, — oo tem coordenadas (0.5, 0.5). A distancia entre esses dois pontos é ‘1712(\})‘ =2 , pelo que a intensidade,

neste caso, é dada por:
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1o =217

(4.47)
_ %{[C(uz) - Cl)F +[8e) - S F

4.3.6. Difraccao por um ecra opaco semi-infinito

O padrao da distribuicio da intensidade na difrac¢do de Fresnel, determinada por um ecra opaco semi-
infinito, pode ser descrito a partir da situagdo da fenda considerada anteriormente. De facto, para se ter um ecra
na forma de um semiplano opaco, basta remover um dos semi-planos que definem essa fenda. Supondo que se
remove o semiplano correspondente aos valores positivos de x, tem-se que x, — o, pelo que u, — c. Deste modo,
ter-se-4 C(u, ), S(u,) — %, pelo que a intensidade num ponto para além do semiplano sera dada a partir da Eq.
(4.47) por:

2 2
IP:% {%—C(ul)il +[%—S(741)} (4.48)

Se o ponto de observagao P, estiver ao nivel do bordo do semiplano (P, = P, na Fig. 4.10a), tem-se u, = 0
e C(0) = S(0) = 0, pelo que I, = 1/4. A medida que o ponto P, mergulha na sombra geométrica do semiplano
(P,=P) o valor (positivo) de u, vai aumentando, o comprimento do vector V/,(u) vai diminuindo e a intensidade
decresce monotonamente. Contudo, quando o ponto P, se desloca para fora da sombra geométrica (P, = P,)
e 2 medida que se afasta do bordo do semiplano, verifica-se que o comprimento do vector ¥’ ,,(u) comega por
aumentar e adquire, posteriormente, um comportamento oscilatério amortecido em torno de ‘1712(1/!)‘ =2 ,
correspondente a evolucdo de u, ao longo da espiral centrada em (-0.5, -0.5). A variacio da intensidade com u,

encontra-se representada na Fig. 4.10b.

I,
= 22
o ‘l'f
AY
. ‘\
Y "
3 v
\- "‘ ‘l 1.0
—~ :‘ I \
- ] ; !_l
’ b
i u
¢ : 1 }]
'n‘ \’J S‘
’ U . *=
. L B 025Fp,
, &/
1 I -
2 0 -2 4 ty
(@) ®

Figura 4.10 - a) Difrac¢ao de Fresnel determinada por um semiplano opaco e b) variacido da respectiva intensidade.
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4.4, Problemas resolvidos

PR 4.1. Considere uma abertura X situada no plano xy, iluminada por uma onda plana de amplitude £, , que
se propaga paralelamente ao eixo dos z. Partindo do integral de difraccio, dado pela Eq. (4.7), desprezando a
contribuicdo devida as ondas difractadas pela fronteira da abertura e usando o resultado previsto pela 6ptica

geométrica para o campo no ponto de observagao, mostre que o factor de obliquidade é dado pela Eq. (4.8).

Resolugao
A figura 4.11 ilustra a abertura X. A drea correspondente a fonte elementar de Huygens no P, é dada, em
coordenadas polares, por ds = rdrd¢$. Atendendo a que E(r) = E, = const. para z = 0, tem-se que o integral de

difraccdo, dado pela Eq. (4.7), que permite calcular o campo no ponto P, da Fig. 4.11, se pode escrever na forma:

Figura 4.11 — Geometria para o calculo da grandeza do factor de obliquidade.

27t —ik.R

E(z0)=0F , [ [<——rdrdy 6))
00

onde 7, (¢) € o valor miximo de r, correspondente a periferia da abertura. Considerando a geometria da Fig. 4.11
tem-se que Zg +r’=R?, pelo que a variavel de integracdo » na Eq. (1) se pode escrever em termos de R usando a

relacdo rdr = RdR. Os limites inferior e superior de integra¢io sao, respectivamente,

R=z, (2a)

R=R,(§) =z +1.($) (2b)

pelo que a Eq. (1) fica:

27 R,
E(z)=0F [ [ e"*drdg @)
0z

Efectuando a integracao sobre R, obtém-se:

QE 2z 2z

i| —ikz, —ikR,,

E(z)=——"e [dg— [ Pag ()
0 0
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A segunda contribuicao na Eq. (4) corresponde a soma das ondas difractadas pela fronteira da abertura.
Esta contribuicdo pode geralmente ser desprezada, dado que o produto kR (¢) varia de varios miltiplos de 27

quando se integra em torno da abertura. Deste modo, o resultado da Eq. (4) pode apresentar-se na forma:

E(zy) = 27;{QE e =—iJQE e = —iJQE )
onde
E :El.efikz0 (6)

08

é o resultado previsto pela 6ptica geométrica para o campo no ponto P, situado no eixo dos z, a uma distancia z,

da abertura. Para que a igualdade £(z,) = Eog se verifique, deve ter-se:
-il0=1 @)
Ou seja, tem-se

_i (8)
0 A

PR 4.2. Partindo do integral de difraccdo dado pela Eq. (4.7), mostre que as intensidades correspondentes a

difrac¢do por duas aberturas complementares sdo iguais (Teorema de Babinet).

Resolucio

A férmula de difraccio, dada pela Eq. (4.7), exprime o campo E(7,) na forma de um integral sobre a
abertura ¥ . Essa abertura pode ser considerada como a soma de duas partes complementares, ¥, e X, tais que
Y =%, +X, . Deste modo, o campo no ponto de observagdo P, sera dado, a partir da Eq. (4.7), pela soma dos
integrais calculados sobre Z; e sobre X,. O integral sobre X; dd o campo E(7,), que existiria no ponto P, se a
abertura se resumisse apenas a essa parte, enquanto o integral sobre X, d4 o campo E, (%), que haveria nesse

mesmo ponto se existisse apenas esta parte da abertura. Deste modo, tem-se
E(ry)=E (rp) + E5 (1) ®

Ou seja, o campo correspondente a abertura total obtém-se somando os campos correspondentes as duas

aberturas complementares.

A Eq. (1) é particularmente ttil quando o célculo do campo difractado por uma dessas aberturas, por
exemplo X, , érelativamente complicado, podendo ser substituido pela diferenca entre os campos correspondentes

a abertura total, X, e a abertura complementar, X ,.

Uma situacio de especial interesse acontece quando o campo no ponto P, correspondente a abertura X é

zero ou desprezavel. Neste caso, a Eq. (1) da
E\(ry) =—E» (1) (2

Como a intensidade é proporcional ao quadrado do mdédulo do campo, tem-se que as intensidades

correspondentes as duas aberturas complementares sao iguais.
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PR 4.5. Considere a geometria da Fig. 4.2 e assuma as condicdes |R0—R| <R, e x*+)'<2IR ,sendo R a
distancia entre os pontos P(x, y) e P, (xp ,,), enquanto R ¢ a distancia entre o centro da abertura, de coordenadas
(0,0) e o mesmo ponto P, (xp , yp). Partindo do integral de difrac¢io, dado pela Eq. (4.7), mostre que o campo no
ponto de observagao P, (xp , yp) é dado pelas Eq.s (4.9) e (4.10).

Resolucio

Considerando a geometria da Fig. 4.2, tem-se que a distancia entre o ponto P na abertura e o ponto de
observacio P, ¢ dada por:

2 _ N2 N2, 2
R =(x-x,) " +(y—-y,) +z €y
Por outro lado, a distancia R entre o centro da abertura e o ponto de observacio P é:

2_ 2, 2, 2
Ry=x,+y,+z (2

A partir das Eq.s (1) e (2), tem-se:

R _R_Rg—Rz_(xxp+yyp_x2+y2J( 1 J
) =

R,+R | R, 2R, M\1-(R,—R)/2R,
3)
| ety _xz +)’
R, 2R,

Na obtencao do resultado final na Eq. (3) considerou-se a situacao

|R0—R|« R, (4)

Usando a Eq. (3), o integral de difrac¢do dado pela Eq. (4.7) fica:

X, tyy, X2 4yl
E,=A||l exp|ik| —2 2 _ xd (5)
p ﬂ £ p{ ( Ro 2 Ro Y
onde
E. 75
4= OF, o iRy (6)
Ry

Na obtencao da Eq. (5) R foi substituido por R0 no denominador da Eq. (4.7).

Quando o ponto de observacio P, est4 suficientemente afastado da abertura, tem-se:

x2 + y2 «1 (7)

2R,

podendo-se entdo desprezar o segundo termo na exponencial da Eq. (5) e obter o resultado

xx +
E,=4 JL expliik ("Ryypﬂdxdy (8)
0
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PR 4.4

a) Caracterize o padrao de difraccdo devido a uma abertura rectangular, cuja funcao de transmissao é dada
pela Eq. (4.12).

b) Partindo do resultado obtido na alinea anterior, obtenha a expressao dada na Eq. (4.13) para a distribuicao

de intensidade correspondente a uma fenda de largura a.

Resolugao
a) Introduzindo a Eq. (4.12) na Eq. (4.11) tem-se:

al2 b/2
Ep=4 Je“‘xx dx J. et dy
—al2 ~b/2
:SA sena, sen (,Zy (1)
a, a,
onde
o, Kot Koy, (2)
2 2R,
g Kb Kby, ®)
Y2 2R,
e S = ab é a 4rea da abertura.
A funcao
sen(w) _ senc(w) (4)
encontra-se representada Fig. 4.3. Os zeros da func¢do senc(w) ocorrem para
w = mn (5)

sendo m um numero inteiro diferente de zero. Por outro lado, usando a regra de L'Hopital, tem-se

1im(sen(w)) - 1im(°°sl(w)J -1 (6)

w—0 w w—0

que corresponde ao maximo central da funcao senc(w). A localizacdo dos outros extremos desta fung¢io é dada

pela condicao

M -0 @)
dw
que da,
tg(w) =w (8)
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As solucoes desta equacio transcendente podem ser determinados grafica ou numericamente, obtendo-se
w=x%1.43037, £2.45907, £3.47077x ...

A distribuicao da intensidade no padrao de difraccdo de Fraunhofer produzido pela abertura rectangular

é dada por:

1,=1, senc” r, senc’ a, 9
onde

1, =(s]|f (10)

representa 0 maximo da intensidade, que ocorre para a, =a, =0. Os minimos da intensidade ocorrem para
a,=nx ou para a,=mx, sendo n e m numeros inteiros. Pode-se verificar que as dimensdes do padrao de
difraccdo, dadas pelas coordenadas x,, e y, doplano de observa¢ao correspondentesam =n = 1,sdo inversamente

proporcionais as dimensdes da abertura.

b) A fenda simples pode ser considerado como um caso particular da difrac¢io por uma abertura
rectangular, considerada antes. Suponhamos que a fenda, com uma largura a, é paralela ao eixo dos y e bastante
longa, de modo a ter-se by . Neste caso, o factor senc’ o , naEq. (9) decresce rapidamente para y,, # 0, pelo que
a luz difractada pela fenda se espalha predominantemente no plano xz. Considerando que senc’ & » —1 quando

Y, 0, a distribuicao de irradiamcia dada na Eq. (9) reduz-se entao a forma

2
I _ 10 Sen2 o (11)
[04
onde
ka Xp
a=—send send =—+ (12)
2 R,

sendo @ o angulo medido relativamente ao plano yz.

PR 4.5. Uma fenda simples ¢é iluminada por luz com comprimento de onda A =650 nm e produz um padrio
de difraccao de Fraunhofer em que os minimos de primeira ordem se situam numa direc¢do que faz um angulo

6 =5° com a normal ao plano da fenda. Determine a largura da fenda.

Resolucao
Das Eq.s (11) e (12) do problema PR 4.4, tem-se que os minimos de intensidade no padrao de difraccio

ocorrem para
a . .
a= 7sen6 =mm , minteiro (1)

onde a ¢ alargura da fenda. Considerando m = 1 e substituindo os valores indicados, tem-se

A 6.5x107

a= = =7.45x10"° m (2)
send  sen(5°)
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PR 4.6. Demonstre o teorema matricial, dado pela Eq. (4.16).

Resolugao
Considere-se um conjunto de N aberturas idénticas, sendo f{x) a funcio de transmissdo de uma dessas
aberturas situada na origem do plano. A fun¢do de transmissdo de uma abertura centrada no ponto x, pode

exprimir-se em termos da funcio de transmissao f{x) segundo a relacio:
fa=x,)= [ F()3(x—x, —x)a @

onde J representa a funcdo delta de Dirac. O integral da Eq. (1) pode ser entendido como a convolucio da fun¢io

J(x) com a funcdo d(x -x ) . A funcdo de transmissao correspondente ao conjunto de todas as aberturas ¢ dada por:

N
g)=) f(x-x,)
n=1 (2)

= ﬁ: Tf(x‘)&(x—xn —x")dx'

n=l _xp

O padrao de difrac¢ao de Fraunhofer, correspondente ao conjunto das aberturas, é dado pela transformada
de Fourier de g(x):

G(k,)=Flg(x)} (3)

Considerando a funcdo g(x) dada pela Eq. (2) e utilizando o teorema da convolugéo, obtém-se:

N
G(k,) =Y F{f(x)|F{5(x~x,)}

" N @
= F{f(X)}F{Z S(x— x,,)}
n=l1
A duas dimensoes, este resultado assume a forma:
N
Glhyk,) = Flg(x,»)}= F{f (x, y)}F{Z S(x—x,)5(y - y,,)} %)
n=1
onde
N
gxy)=2 f(x=%,,y=,) 6)
n=1
PR 4.7

a) Obtenha a dispersao angular do espectro de primeira ordem para a luz branca que incide normalmente
numa rede de transmissdo que apresenta 1000 estrias por centimetro. AQ
b) Calcule a dispersao angular para uma pequena banda de comprimentos de onda, dada por D = e

para a primeira ordem de dispersdo pela mesma rede, funcionando no visivel.
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Resolucio
a) Considerando a Eq. (4.20), tem-se que os maximos principais na distribui¢ao da intensidade ocorrem quando

senNf _N )
senf3
onde
kd
= 75en0 2)

A condi¢io (1) verifica-se quando f = 0,£7,127, ...ou seja, quando

dsenf, =mAi. 3)

No caso do problema, considera-se m =1 e

1072
d= =1x10" m (4)
1000

A luz branca estende-se numa banda de comprimentos de onda compreendida entre 4, =390 nm e A, =780 nm,

pelo que se tem:

39010~
sen 91 —W—0039 (5)
-9
send, = 780x10 " _ 0.078 (6)
1x1073

Ou seja, tem-se 6, = 2°14°, 0, =4°28"e

AO=0,-0,=2°14. )

b) Neste caso, diferenciando a Eq. (3), obtém-se

D:Aie: m (8)
AA  dcosd,

Considerando A = 500 nm, tem-se d » 4, pelo que a Eq. (3) permite concluir que cosf,, ~1 param = 1.

Deste modo, a dispersdo angular é D = 1x10° rad/m.

PR 4.8. O padrao de difrac¢do de Fraunhofer de uma fenda dupla iluminada com luz de comprimento de onda
A =500 nm, aparece no plano focal posterior de uma lente com uma distancia focal /=120 cm. O espagamento
entre franjas brilhantes consecutivas é 1 mm e o terceiro maximo estd ausente. Determine a largura de cada fenda

e a distancia entre elas. Faca uma representacao grafica da distribuicéo de intensidade.
Resolucao

O espacamento entre franjas na experiéncia de Young é dado por Ay = D1/d , tendo-se que, neste caso,

D = =120 cm. Assim, o espacamento entre as fendas é:
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_ DA _(120x107)(500x10~%)

=0.6 mm 1
Ay 1x1073 W

d

Os maximos de interferéncia ocorrem quando:

dsenf = mA, minteiro (2)

Por outro lado, os minimos no padrao de difrac¢ao, produzido por uma fenda simples, ocorrem quando
asend =nl , ninteiro 3)

Quando ambas as condic0es sdo satisfeitas em simultaneo, nenhuma luz atinge o plano de observagao, nao

se observando ent?o as franjas de interferéncia que seriam esperadas nessas posi¢oes. Tem-se entao:

M _ v 4)

Q|

No caso em consideracdo, m =3 e n = 1, pelo que M = m/n = 3. Assim, a largura da fenda é

a:%:O.z mm. (5)

Iy

Efeito de difracgio
por uma fenda simples

Efeito de interferéncia

A 0 4 sentl
a

Figura 4.12 — Distribui¢io da intensidade na difrac¢@o por duas fendas iguais, para o caso d = 3a.

A Fig. 4.12 ilustra a distribuicao da intensidade correspondente & difraccio pelas duas fendas quando d = 3a.

Neste caso, verifica-se que as franjas de interferéncia de ordem m =3, 6, 9, ... estao ausentes.

PR 4.9. Determine o raio do disco central, formado na retina do olho, na imagem de um objecto pontual distante.
Considere que a pupila do olho tem um raio ¢ = 1 mm, que a sua distancia a retina é de d = 2 cm e que a luz tem

um comprimento de onda A = 600 nm.
Resolucao

A pupila do olho funciona como uma abertura circular, formando-se um padrao de difrac¢do de Airy na

retina. A partir da Eq. (4.24) tem-se que o raio do disco central desse padrao é dado por:

120



Ro/l
ry, =12 —
2a

—2 —7
1o 2X107)(6x107)

=732x10°m 1
2(1x107) ™

PR 4.10. Considerando a geometria da Fig. 4.5, obtenha o resultado dado pela Eq. (4.25) para o campo no ponto

de observacgao correspondente a zona de Fresnel de ordem j:

Resolucio

Cada zona de Fresnel na Fig. 4.5 pode ser encarada como uma abertura iluminada do lado esquerdo por
uma onda esférica proveniente do ponto P, , da forma:

—ik.R
= Eje ™"
E (R == — ®
R
A

Considere-se um anel elementar com raio R /.senH elargura R fd 6 dentro de uma dada zona de Fresnel. Usando
o principio de Huygens e introduzindo o factor de inclina¢do 0, o campo no ponto £, devido a esse anel elementar é
dado por

dE (Ry) =E;(R,)Q

efilz R

R

ds (2
onde dS é a area do anel elementar, dada por
dS =27R} sen6do 3
Considerando a geometria da Fig. 4.5 e aplicando a lei dos co-senos, tem-se:
R*=R}+(R,;+Ry)* —2R (R, +R;)cosf (4)
Diferenciando esta expressdo obtém-se:
2RAR=2R (R, + R,)sen&d® (5)

A Eq. (5) pode ser substituida na Eq. (3), obtendo-se:

R,
dS =2n——RdR (6)
Rf + R,

Substituindo a Eq. (6) na Eq. (2), tem-se que campo no ponto P devido a zona de Fresnel de ordem j pode

ser escrito na forma:

- R R, %
_ f i _—ik.R
E(R)=27E,(R )0, R R, jRHe dR ™

onde R; =R,+ jA/2 e R, | =Ry+(j—1)A/2. Ao escrever a Eq. (7) considerou-se que o factor de obliquidade €
aproximadamente constante sobre a zona de Fresnel em causa, ou seja, Q(¢) = Q. O célculo do integral na Eq. (7)

permite obter o resultado:

E,(B) =2i(-1y 25 vy
JN\0 Rf+RO (8)
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PR 4.11. Ondas planas com comprimento de onda 4 = 500 nm incidem perpendicularmente num ecra opaco
que possui uma abertura circular de raio ¢ = 1.0 mm. Determine as distancias axiais relativamente ao ecra

correspondentes aos dois pontos mais afastados com méaximos de intensidade.

Resolugao
Oraio dan-ésima zona de Fresnel, , , relaciona-se com a distancia R entre a abertura e o ponto de observacio

na forma

r, =+nAR, @

Fazendo 7, =a, tem-se que o ponto mais distante com intensidade méxima corresponde a n=1, situacdo em que
a abertura é completamente preenchida apenas por uma zona de Fresnel. A distancia desse ponto ao ecra é dada por
2 -3y2
a 1x01
R‘Ol=—=%=2m (2)
A 5x01
O ponto seguinte com intensidade maxima corresponde a n = 3, situagdo em que a abertura € inteiramente
preenchida por trés zonas de Fresnel. A distancia desse ponto ao ecra é dada por:
a  (Ix107)*

L G L 3
%732 3(5x107) o @)

PR 4.12. Considerando a geometria da Fig. 4.6 e assumindo a aproximacao paraxial, obtenha o resultado dado na

Eq. (4.36) para a relacio entre o raio da zona de Fresnel de ordem n, 7, e as distancias, Ze Z -

Resolugao

Considerando a geometria da Fig. 4.6, tem-se que o raio y de uma zona arbitraria é dado por:
2 2_p2 52 _ 2
Ry -Z;=R"-Z"=y )

A partir da Eq. (1), e supondo que o angulo 6 na Fig. 4.6 é suficientemente pequeno, pode-se escrever:

vy (2)

R,~Z,=—" =
T4
Rf+Zf ZZf

2 2
y y (3)

“R+Z 27

Quando y =, que corresponde ao raio da zona de Fresnel de ordem 7, a diferenga de percursos entre o

raio que vaide P, a O edepoisa P eoraioquevaide P a P aolongo do eixo, ¢ dada por:

nAi
R RV—(Z.,+7)= 4

Substituindo as Eq.s ( 2) e (3) na Eq. (4) e fazendo y =r obtém-se:

1

1. (5)
Zf Z 7P

n
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PR 4.13. Um feixe colimado de luz com comprimento de onda /4 incide perpendicularmente numa placa zonada,
verificando-se o aparecimento de um maximo de intensidade sobre o eixo, 1 m atras da placa. Determine o ponto
onde sera focada a luz com o mesmo comprimento de onda, no caso de ela divergir de um ponto situado 1.5 m a

frente dessa placa.

Resolucao
Da Eq. (4.36) tem-se:

1,11 6
Zf zZ f
onde
1 ni
?_7 (2

No caso de o feixe incidente ser colimado, tem-se Z =0, pelo que Z = =1 m. Por outro lado, quando

Zf= 1.5 m, tem-se:

i
15

L11 (3)
Z 1

Ou seja, a luz é focada a uma distancia Z = 3 m da placa zonada.

PR +.14. Uma placa zonada de Fresnel é constituida por cinco zonas. A primeira zona consiste num disco circular
de raio r. A segunda é um anel concéntrico e transparente situado entre rer,, seguindo-se um anel opaco entre
r, e r,, outro anel transparente entre r, e , e, finalmente, uma zona opaca entre r, e o infinito. Os valores destes
raios estao na razao das raizes quadradas dos respectivos indices. Quando a placa zonada é iluminada por ondas
planas monocromaticas com comprimento de onda 500 nm, verifica-se a existéncia de uma mancha brilhante
mais intensa no eixo da placa zonada 1 metro atras dela.

a) Qual é o valor do raio r,?

b) Indique a intensidade dessa mancha em termos da intensidade da onda incidente.

¢) Indique as posicoes dos maximos de intensidade ao longo do eixo.

Resolucao

a) O raio da n-ésima zona,  , relaciona-se com a distancia R entre a abertura e o ponto de observagao na
forma dada pela Eq. (4.33). A distancia R para a qual de observa a mancha brilhante mis intensa corresponde a
situacdo em que cada cada anel da placa zonada corresponde a uma tinica zona de Fresnel. Neste caso, o valor de

7, é dado pela Eq. (4.33) considerando R = 1 m, A=500nm e n=1, obtendo-se

rlz7><104m 1

b) Tendo em consideragdo a resposta na alinea anterior, tem-se que o campo no ponto de observacao

situado no eixo 1 m atras da placa é

E=E,+E,~2E,. ©)
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Por outro lado, o campo que existiria nesse mesmo ponto devido a onda incidente (nao obstruida), seria

E, ~E/2 (3)

Ou seja, tem-se £ =~ 4E_ . Como a intensidade é proporcional ao quadrado do médulo do campo, a

intensidade da mancha relaciona-se com a intensidade da onda incidente, /_, na forma:

I=161 . (4)

c) A distancia R = 1 m corresponde a distancia focal de primeira ordem, f, . As posi¢des dos outros

maximos de intensidade ao longo do eixo correspondem as distancias focais de ordem superior:

n n

f=hitm on=3s (5)

Nestes casos, cada um dos anéis da placa zonada contém um nimero impar de zonas de Fresnel.

PR 4.15. Partindo do integral de difraccao dado pela Eq. (4.7) e tendo por base a geometria da Fig. 4.8, demonstre
o resultado dado ela Eq (4.46) para a distribui¢do de intensidade devida a difrac¢do de Fresnel por uma abertura

rectangular.

Resolucio
Considere-se a Fig. 4.8, onde se assume que uma abertura rectangular situada no plano (x, y) é iluminada
por uma onda esférica El- =(E, /Rf)exp(—i/; : Ef) , originada numa fonte pontual situada em (xf Vs Zf) .
Considerando o factor de obliquidade como uma constante, pode-se calcular o campo no ponto de
observacdo P com base na Eq. (4.7), que assume o aspecto:

e—il?-(fhﬁ, )
Ep= QEOJLdexdy ™

A geometria da Fig. 4.8 permite escrever as seguintes expressoes para as distancias R e R /.:

R=\/(xp —x)? +(y, -y +z?

(x, =)+, -’

~7+ 27 (2a)
R, :\/(x—x‘f)2+(y—yAf)2+ZJ2f
2 2

sz_'_(x_xf) -y (2b)

2Z,
No denominador da Eq. (1) pode-se aproximar R e R , por ZeZ > respectivamente, dado que as amplitudes

das ondas esféricas nao variam significativamente sobre a area de integracdo. Contudo, no expoente dessa equagio

deve-se considerar as aproximacdes dadas pela Eq. (2).
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Introduzindo os parametros X ey definidos nas Eq.s (4.43) e (4.44), respectivamente, pode-se reescrever
a Eq. (1) na forma:

_k D

—ikd
E, =0QE, %ﬂz GXP{ 57 e, +(y—ys)2]}dxdy (3)
f

s

ondeD =7+7 g é a distancia entre os planos da fonte pontual e do ponto de observacao e

+(xp_xf)2+(yp_yf)2 (4)
2D

d~D

¢ a distancia entre a fonte e o ponto de observacao.

Usando as novas variaveis u e v, dadas pelas Eq.s (4.41) e (4.42), pode-se escrever a Eq. (3) na forma

» =7Oe*!kd.|‘e*!ﬂu /2duJ'efmv 12y (5)
2D " "

onde se usou a Eq. (4.8). Cada um dos integrais na Eq. (5) pode ser calculado com base nos chamados integrais de
Fresnel, C(w) e S(w), dados pelas Eq.s (4.39) e (4.40). De facto, tem-se:

je*"’“z/zds = C(w)—iS (w) (6)
0

Os integrais de Fresnel foram calculados exaustivamente e os seus valores encontram-se devidamente tabelados.

O uso dessas tabelas permite calcular facilmente o campo dado pela Eq. (5), o qual se pode apresentar na forma:
i
Ep =2 B[Cw) —is@] [co)-is ]} M

Na Eq. (7), E[ representa o campo que existiria no ponto de observacio se nao houvesse qualquer
obstaculo, dado pela Eq. (4.45).

A intensidade no ponto de observacgio é dada entao por:
1
1 = H{Cw) - )P +5) = S@)F ) - ConP +[50) -5 F ®)

em que /, ¢ a intensidade correspondente a onda nio obstruida no ponto de observagao. O resultado anterior

pode apresentar-se na forma
I /5 2= 2
Ip :7|V12(“)| |V|2(V)| ©
4
onde
7 . W,
V,=[Con—isw)];: (10)
€ o vector que une os pontos w, e w, na espiral de Cornu.
PR 4.16. Considere um ecra opaco semi-infinito disposto verticalmente, de tal modo que o seu limite superior
¢ horizontal. Esse ecra é iluminado por um feixe colimado de luz que incide normalmente e que apresenta um

comprimento de onda de 4 = 500 nm. Determine a intensidade num ponto situado 4 m atras do ecrad e 2 mm
abaixo do nivel do seu bordo.
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Resolucio
Dado que o feixe é colimado, as frentes de onda da luz incidente podem considerar-se planas. Neste caso,

tem-se Zf.= oo, peloque D = Zf e:

u=(x—xs)"é (¢))

Introduzindo os dados do problema, tem-se:

(o —x )2 m2x107 2
u, =(x xs)\/; 2x10 (500x10°)(4) 2 (2)

Recorrendo a uma tabela dos integrais de Fresnel, tira-se que C(2) = 0.4882 e S(2) = 0.3434. Deste modo,

tendo por base a Eq. (4.48), a intensidade no ponto em causa é dada por
_ Il 2 24 _
Ip== [0.5-0.4882] +[0.5-0.3434] (= 0.0121, (3)

sendo /, é a intensidade correspondente a onda nio obstruida no ponto de observagao.

4.5. Problemas propostos

PP 4.1. Um feixe de luz monocromatica com comprimento de onda A = 500 nm incide numa fenda simples, sendo
o respectivo padrao de difrac¢do observado num ecrda que se encontra a distancia de 1 m da fenda. Sabendo que

espacamento entre o primeiro e o terceiro minimos do padrao de difraccao é de 4 mm, determine a largura da fenda.

PP+.2. Um feixe de luz monocromatica com comprimento de onda A = 500 nm incide numa fenda estreita e longa,
situada a frente de uma lente delgada convergente de distancia focal f'= 80 cm. Sabendo que os primeiros mi-
nimos (adjacentes a mancha central) do padrao de difrac¢do de Fraunhofer estdo espacados de 6 mm, calcule a

largura da fenda.

PP 4.3. Mostre que, na difracio de Fraunhofer, os padrdes de intensidade produzidos por dois ecras
complementares, sendo que um deles é opaco e contém um fenda estreita de largura a, sao idénticos, excepto

perto do centro. Este problema ilustra um caso particular do Teorema de Babinet.

PP 4.4. Tem-se uma abertura quadrada de lado 2L, centrada no ponto de coordenadas (a, b, 0) e cujos lados sdo
paralelos aos eixos dos x e y. Essa abertura é iluminada por ondas planas monocromaéticas, cuja direccao de propagacao,
situada no plano xz, faz um angulo @ com o eixo dos z. Determine, na aproximacio de Fraunhofer, a distribuigao de

intensidade no plano de observacio. Compare o resultado obtido com o que se obtém no casoa =b =0 e 0 =0.
PP+4.5. a) Determine a distribuicao de intensidade correspondente a difrac¢ao de Fraunhofer produzida por duas

fendas paralelas, uma de largura a e outra de largura b, espacadas de /.

b) Use o resultado obtido em na alinea a) para descrever o padrao de difrac¢do no caso a = b.
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PP 4.6. Duas fendas paralelas e iguais tém uma largura de 0.5 mm e os respectivos centros estao espagados 2.5

mm. Quais os maximos de interferéncia que estarao ausentes do padrao de difraccao de Fraunhofer?

PP 4.7, Considere um feixe de luz monocromaética com comprimento de onda 4 que incide numa fenda simples
de largura a = 7/1.

a) Escreva a expressdo para a distribuicao da intensidade numa regiao bastante afastada da fenda e faca
a respectiva representacdo grafica. Calcule as posi¢oes do primeiro minimo e do primeiro maximo secundario.

b) Considere a fenda dividida em duas partes iguais, cada uma com largura a/2. Deseja-se alterar de 180° a
fase da luz que passa por uma dessas partes. Diga como podera ser concretizado esse propdsito.

¢) Obtenha uma expressao que descreva a distribui¢do de intensidade para a situagdo da alinea b) numa

regiao bastante afastada da fenda. Calcule as posi¢des dos dois primeiros minimos e do primeiro maximo neste caso.

PP 4.8. Calcule a separacdo angular entre as linhas D do sédio (4 = 589.592 nm e A = 588.995 nm) no espectro de
primeira ordem determinado por uma rede de transmissao com 5000 linhas por centimetro e para uma incidéncia

normal.

PP 4.9. Um feixe colimado de luz monocromaética, com comprimento de onda A = 500 nm, incide numa lente
convergente que apresenta um didmetro de 1.5 cm e uma distancia focal f'= 60 cm. Obtenha o didmetro angular

do disco central no padrio de difrac¢ao formado no plano focal da lente.

PP 4.10. Considere um ecra opaco contendo um orificio com 2 mm de didmetro, que é iluminado normalmente
por ondas planas com comprimento de onda 4 =600 nm . Indique as posi¢des mais afastadas sobre o eixo do

orificio em que sera possivel observar dois minimos de intensidade. Justifique a existéncia desses minimos.

PP+.11. Um feixe colimado de luz de comprimento de onda 4 =500 nm incide num ecra opaco que apresenta uma
abertura circular com raio, 7, ajustavel. Um metro atras e no eixo da abertura encontra-se um detector com uma
area sensora bastante pequena. Verifica-se que a intensidade detectada oscila quando o raio da abertura aumenta
desde 0 até co.

a) Indique o raio da abertura para o qual se observa o primeiro maximo de irradiancia.

b) Indique o valor desse raio correspondente ao primeiro minimo.

¢) Indique a razdo entre as intensidades na situa¢do a) e quando 7 = 7.

d) Suponha que o ecra é substituido por um disco opaco de raio igual ao encontrado em a). Qual a

intensidade detectada neste caso ?

PP 4.12. Um ecra opaco apresenta uma abertura com a forma indicada na Fig. 4.13, tendo-se BD =2 mm,

BE =241 mm e AE =3.14 mm . Considerando a incidéncia normal nessa abertura de ondas planas de
comprimento de onda 500 nm, determine a amplitude da luz num ponto do eixo a uma distancia de 2 m do ecra,

em termos da amplitude que 14 existiria se a onda inicial ndo fosse obstruida.

A B D E

Figura 4.18 - Geometria de uma abertura
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PP 4.13. a) Mostre que a area de uma zona de Fresnel é dada por:

R,
A=—"—aRA
Rf +R,

sendo R , 0 raio da frente de onda esférica primaria e R a distancia desde essa frente de onda até ao ponto de
observacao

b) Obtenha uma expresséo para o nimero de zonas de Fresnel compreendidas numa abertura circular de
raio a, centrada na linha que passa pela fonte pontual da onda primaria e pelo ponto de observagio. Mostre que

essa expressao se pode apresentar com um aspecto semelhante ao da equagio de uma lente convencional:

e obtenha uma expressao para f.

PP 4.14. Um feixe colimado de luz, com comprimento de onda A = 550 nm, incide normalmente numa placa
zonada de 3.0 cm de didmetro. Verifica-se a formacgdo de uma mancha brilhante mais intensa a uma distancia
de 1.00 m da placa zonada. Determine a que distancia se forma a mancha brilhante mais préxima. Justifique a

existéncia dessa mancha.

PP 4.15. Uma fonte pontual F, emitindo luz com comprimento de onda A =600 nm, encontra-se a uma distancia
de 1.5 m de um ecra plano e opaco, contendo uma fenda com 0.4 mm de largura. Usando a espiral de Cornu,
calcule a intensidade num ponto P situado no lado oposto do ecra e a 4.5 m dele. Suponha que a linha FP é

normal ao plano e passa pelo centro da fenda.

PP 4.16. Um ecra plano de observacao esta situado a uma distancia d = FP=6m de uma fonte pontual F,
que emite luz com comprimento de onda 4 = 500 nm. O ponto P resulta da intersec¢io entre o ecri e a normal
que passa pela fonte. A meio caminho entre a fonte e o ecra situa-se um outro ecra opaco, paralelo ao anterior e
semi-infinito, cuja fronteira superior é rectilinea, horizontal e tangente & linha FP . Determine a intensidade a)

no ponto P e b) 2 mm acima e abaixo de P.
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Capitulo 5

FIBRAS OPTICAS

A primeira experiéncia de éptica guiada foi realizada por John Tyndall em 1870, quando demonstrou que
a luz podia ser guiada no interior de um jacto de agua, por sucessivas reflexdes internas totais. Esse jacto de agua
funcionou assim como uma fibra éptica primordial. As primeiras fibras 6pticas de vidro foram fabricadas ja nos
anos vinte do século passado, mas a sua utilizacao tornou-se mais habitual apenas nos anos cinquenta, quando as
caracteristicas de confinamento daluzforam significativamente melhoradas através daincorporagao deumabainha
aenvolver o nicleo. Desde essa altura e até aos anos setenta, as fibras 6pticas foram utilizadas, principalmente, no
ambito da medicina, guiando a luz a distancias curtas. O seu uso no dominio das telecomunicacoes nao era entao
minimamente considerado, dada a elevada atenuacio dessas fibras (~1000 dB/km).

As limitagGes impostas pela atenuacao das fibras dpticas comecaram a ser ultrapassadas em 1970, quando
se conseguiram fabricar fibras épticas com uma atenuacdo de cerca de 20 dB/km. O progresso tecnolégico
permitiu chegar, em 1979, a uma atenuacgio de apenas 0.2 dB/km na regido espectral de 1.55 um. A existéncia de
fibras com uma atenuagao tao baixa esteve na origem de uma profunda revolucao que se operou desde entao no
dominio das comunicacdes 6pticas. As fibras opticas sdo também muito utilizadas actualmente para implementar

diversos dispositivos, nomeadamente acopladores, sensores, amplificadores, lasers, etc..

5.1. Fibras opticas com indice em degrau

Na sua forma mais simples, a fibra 6ptica apresenta um nticleo com indice de refrac¢io uniforme, rodeado
por uma bainha cujo indice de refrac¢do é igualmente uniforme e inferior ao do nicleo. Devido a variacdo abrupta
do indice de refraccdo na interface entre o ntcleo e a bainha, estas fibras sao chamadas fibras com indice em

degrau. A Fig. 5.1 mostra esquematicamente o perfil do indice de refraccio para este tipo de fibras.

E 1til considerar algumas propriedades das fibras 6pticas com base no conceito de raio luminoso da éptica
geométrica. Deve notar-se, contudo, que esta descricio é valida apenas quando o raio do ntcleo, a, é bastante
superior ao comprimento de onda da luz, 4, o que corresponde as chamadas fibras multimodo. Quando as duas
grandezas sdo comparaveis, como sucede nas chamadas fibras monomodo, torna-se necessario usar a teoria

electromagnética para descrever adequadamente a propagacao da luz ao longo da fibra.
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Figura 5.1 — Representagio esquematica da sec¢éio e do perfil do indice de refrac¢io para fibras com indice em degrau.

5.1.1. Abertura numeérica

Considerando a geometria associada ao raio (1) da Fig. 5.2, tem-se que a refrac¢ao do raio que entra no
nucleo da fibra é traduzida pela equagio:

nysend, = n;send, (5.1

e
-———

Figura 5.2 — Propagacdo de um raio guiado no nicleo de uma fibra com indice em degrau.
onde 7, e n, sdo os indices de refraccio do nticleo da fibra e do ar, respectivamente. O raio transmitido no nicleo

sofre uma reflexao total na interface nucleo/bainha se o angulo de incidéncia nesta interface for superior ao

angulo critico para reflexao total, dado por:
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seng, = L} (5.2)
nl

onde 1, é o indice de refraccdo da bainha. Todos os raios com ¢ > ¢ permanecem confinados ao niicleo,

correspondendo aos chamados modos guiados da fibra.

Pode-se usar as Eq.s (5.1) e (5.2) para determinar o angulo de incidéncia maximo para um raio a entrada
da fibra, de modo a que ele seja posteriormente guiado pelo nicleo. Introduzindo 6, = 7 /2 — ¢ na Eq. (5.1 e
usando a Eq. (5.2), tem-se:

nsend, = ncosg

/2
) 2
—(”1 ‘”Z)I

O cone de aceitacdo limitado correspondente aos raios incidentes que sdo posteriormente guiados pela

(5.3)

fibra é habitualmente expresso em termos da chamada abertura numérica (AN) da fibra, dada por:
/2
AN= (nl2 - ng)‘ (5.4)

Para uma fibra optica tipica, em que n, = 1.48 e n, = 1.46, tem-se uma abertura numérica AN = 0.242 e um

angulo maximo de aceitacio Q = 14° quando n, = 1.
Paran, = n,, aabertura numérica pode ser aproximada por:
AN =n,(2A)"?, (5.5)
onde

A= (5.6)

A abertura numérica e, portanto, a capacidade de aceitagdo da luz pela fibra, aumenta quando A aumenta.
Contudo, como se vera a seguir, o aumento de A determina também um aumento da chamada dispersdo intermodal,

o que é indesejavel na perspectiva dos sistemas de comunicagao.

5.1.2. Dispersao intermodal

A dispersio intermodal pode ser entendida com base na Fig. 5.2. E evidente que raios distintos per-
correm distancias diferentes. Em consequéncia, estes raios chegam em instantes diferentes ao fim da fibra, ainda
que tenham partido ao mesmo tempo e viajado com a mesma velocidade. O percurso mais curto ocorre para
0= 0, enquanto que o percurso mais longo ocorre para o angulo 0, = Hi’max , dado pela Eq. (5.3). O atraso temporal
AT entre os dois raios que percorrem os caminhos mais curto e mais longo é uma medida do alargamento

experimentado por um impulso lancado a entrada da fibra.
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Num sistema de comunicag¢do por fibra 6ptica, o atraso temporal AT deve ser menor que o tempo de bit
T, = 1/B, sendo B o ritmo de transmissdo. Deste modo, mostra-se no problema PR 5.2 que o produto do ritmo de
transmissao pela distancia, que caracteriza um sistema de comunicagao, deve satisfazer a condicao:
n, c
BL <—%— (5.7
ny A
A titulo de exemplo, tem-se BL < 20 (Mb/s)-km para A = 0.01 e n, = 1.5 (= n,). Estas fibras podem servir
para comunicar a uma taxa de 2 Mb/s ao longo de uma distancia de 10 km. A Eq. (5.7) mostra claramente a
conveniéncia de se usar fibras opticas com abertura numérica reduzida, de modo a que o produto do ritmo de

transmissao pela distancia atinja valores suficientemente elevados.

Os efeitos da dispersao intermodal podem ser significativamente reduzidos usando fibras com indice

gradual, discutidas a seguir, ou mesmo completamente eliminados, usando fibras monomodo

5.2. Fibras ¢pticas com indice gradual

Para além das fibras com indice em degrau, existe um outro tipo de fibras que se caracteriza pelo facto de o
seu indice de refrac¢do no ntcleo nio ser constante, mas decrescer gradualmente desde um valor maximo no eixo
até um valor minimo na fronteira com a bainha. Estas fibras sdo chamadas fibras com indice gradual. A Fig. 5.3

mostra esquematicamente o perfil do indice de refraccao para este tipo de fibras.

AN

n,

R

— b I

»
>

0 r

Figura 5.3 — Representagio esquematica do perfil do indice de refrac¢do para fibras com indice gradual.

As fibras com indice gradual apresentam um indice de refracgio que pode, geralmente, ser descrito na forma:

n, [1 —A(r/a)"‘] r<a (5.8)
m(1-A)=n, rza

n(r) =

onde a € o raio do nucleo, A é dado pela Eq. (5.6) e o € uma constante. O caso o = 2 corresponde a um indice de

refraccdo com perfil parabdlico. Uma fibra com indice em degrau corresponde ao limite a — oo.
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Figura 5.4 — Trajectorias de raios guiados em fibras com indice gradual.

Mostra-se no problema PR 5.4 que um raio meridional se propaga numa fibra com indice gradual com perfil
parabdlico segundo uma trajectéria sinusoidal. Na Fig. 5.4 representa-se a evolucdo de trés raios meridionais
guiados, correspondentes a trés valores distintos do angulo inicial com o eixo. Com base nesta figura, torna-
-se facil entender, em termos qualitativos, a reducdo da dispersdo intermodal que se obtém usando uma fibra
com indice gradual. Como acontece com as fibras com indice em degrau, o percurso mais longo corresponde aos
raios mais obliquos. Contudo, no caso das fibras com indice gradual, a velocidade do raio varia ao longo do seu
caminho, devido a variacao do indice de refraccao. O raio que se propaga ao longo do eixo da fibra tem um trajecto
mais curto, mas, em contrapartida, viaja com uma velocidade inferior. Os raios mais obliquos tém uma parte
significativa do seu trajecto em zonas com um indice de refrac¢do mais baixo, onde a sua velocidade é superior.
Em consequéncia, consegue-se uma reducao significativa da dispersao intermodal usando fibras com um indice

de refracgao gradual, desde que o perfil do indice de refrac¢io seja escolhido de modo conveniente.

5.3. Modos guiados

A transformada de Fourier do campo eléctrico é dada por
— |
E,(F,0)=— j E(F,expliot)dt , (5.9)
2r =,
e satisfaz a seguinte equacao, obtida da equacao de onda (1.15):
V’E, +n’(0)kE, =0 (5.10)
onde k, = w/c é o numero de onda no vazio.

Dada a simetria cilindrica da fibra dptica, torna-se conveniente reescrever a Eq. (5.10) usando as coor-
denadas cilindricas 7; ¢ e z:
O, , 1 O°E, OE

)=
OE, L 0 Z "oy lE =0 (5.11)
o ror rt of 0z* ¢
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onden =n para r<a e n =n,para r > a. Pode-se escrever uma equacdo semelhante a anterior para a
transformada de Fourier do campo magnético H ., - Como os campos E e H satisfazem as equacdes de Maxwell
(1.7)-(1.10), tem-se que das seis componentes apenas duas sao independentes. Considera-se habitualmente £ e

H  como as duas componentes independentes. Assumindo que £ se pode escrever na forma
E, (r.¢,z) = F(r)®($)Z(2) (5.12)

e substituindo na equagdo (5.11), obtém-se as solucgdes Z(z) = exp(ifiz) e ®(P) = exp(im¢), onde f é a constante

de propagacio e m é um nimero inteiro. Por outro lado, F(r) satisfaz a seguinte equacio diferencial:

OF 10F [ 5,5 ., m’ (5.13)
a},2+rar+[n kO _ﬂ _7 F:O

As solugdes da Eq. (5.13) sao dadas em termos de funcoes de Bessel e podem ser apresentadas na forma:

AT, (pr)+A'Y, (pr); r<a

F(r)= (5.14)
CK,(qgr)+C'I,(qr); r>a

onde 4, 4', Ce C' sdo constantes,J e Y sdofungdes ordindrias de Bessel de ordem m de primeira e de segunda
classe, respectivamente, enquanto / e K sio fungbes modificadas de Bessel de ordem m de primeira e de

segunda classe, respectivamente. Os parametros p e ¢ sao dados por:
p=nik; = p’ (5.15)
q=p’ ~nik; (5.16)
e satisfazem a relagdo:
p2 +q2 = (nl2 —nf )Icg (5.17)
Dado que Y (pr) apresenta uma singularidade para r = 0, deve admitir-se que 4' = 0 para que a solugdo

tenha significado fisico. Por outro lado, a soluc¢do F(r) deve decair na bainha para valores crescentes 7, pelo que

deve ter-se C'= 0. Como consequéncia, a solu¢ao geral dada pela Eq. (5.12) fica reduzida a forma:

_ AJ , (pr)exp(img)exp(ifz); r<a (5.18)
“ |CK, (gr)exp(im@)exp(ifz);  r>a
De modo semelhante, a solugdo para /{ _ pode ser escrita na forma:
_ | BJ, (pryexp(imp)exp(ifz); r<a (5.19)

- {DKm(‘V )exp(im@)exp(iffz);  r>a

As equagoes de Maxwell podem ser usadas para encontrar as expressoes das componentes transversais
dos campos eléctrico e magnético em termos de derivadas das componentes longitudinais. Em coordenadas

cilindricas, tem-se:
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i 8sz 1 0H,,
Sl L L e (5.20)

i 8H,,z
_ ? o (5.21)
L ﬂaﬂu,_ 10k, (5.22)
p or r O¢
» :Lz B o, vt + oo O OE,, (5.23)
p\r 0¢ or

Estas expressoes sdo igualmente validas na regido da bainha se p* for substituido por —¢>

Impondo a continuidade das componentes tangenciais dos campos na fronteira ntcleo/bainha (r = a),
obtém-se quatro equacdes. Tem-se uma solugdo nao-trivial para as constantes 4, B, C, e D se o determinante da

matriz dos coeficientes for nulo, o que conduz a seguinte equacao a valores proprios:

{J;n(pa) +K;n(qa) j||:nl J, w(pa) . K, (qa)} "’2[1+1](71121+1J (5.24)
I w(pa) K ,(qa) | n® pJ . (pa) T4k qa)| a*\p* ¢ \mp* & '

onde as linhas indicam a derivada em ordem ao argumento da funcio.

As solucoes da Eq. (5.24) ddo as constantes de propagacdo f para os diferentes modos da fibra. Para
cada valor de m existem varias solugdes f, (n = 1,2,...). Cada valor f§ corresponde a um modo de propagagio
especifico, cujas componentes dos campos eléctrico e magnético sao dadas pelas Eq.s (5.18)-(5.23). Para m=0 os
modos da fibra sdo designados por TE, e TM, , consoante correspondam a modos de propagacio com campo
eléctrico transverso (£, = 0) ou com campo magnético transverso (//, = 0). Para m > 0 os modos da fibra sao
hibridos, dado que as seis componentes do campo electromagnético sdo nao-nulas. Estes modos hibridos sao
designados por HE, ou EH , dependendo da grandeza relativa das componentes /e E . Por exemplo, se

E__ apresenta uma grandeza maior, o modo ¢é designado por HE.

No caso em que 1, = 1, , a equacio a valores préprios (5.24) pode ser simplificada e apresentar-se na forma:

J(pa) N K,.(qa) :J_r(lJrlJ (5.25)
pJ,(pay GK @qa) ~alp® 4

A Eg. (5.25) com o sinal mais no membro direito é a equagao a valores préprios paraos modos EH, ,enquanto
com o sinal menos ¢ a equacio para os modos HE . O caso em que o membro direito é nulo corresponde aos
modos TE e TM.

Cada modo da fibra tem um indice de refrac¢io efectivo = B/ k,,tal que n>n n, . A situacio

of >

n, = n, corresponde a chamada condigdo de corte, em que se tem g = 0. Torna-se 1til introduzir a frequéncia

eff’
normalizada 7, dada por

V= koa(nl2 -n; )‘/2 (5.26)

Este parametro conjuga os parametros estruturais da fibra e o comprimento de onda da luz guiada,
determinando o nimero de modos suportados pela fibra. Para uma fibra multimodo com um valor elevado de

esse niimero é dado aproximadamente por V2 /2.

135



5.4. Fibras opticas monomodo

A condicao para que uma fibra 6ptica suporte apenas um modo é dada pelo valor de V' para o qual os modos
TE,, e TM,, atingem o corte. Das equacdes a valores préprios (5.24) ou (5.25) pode verificar-se que a condigao de
corte para ambos os modos é dada por J, (J) = 0. O menor valor de /' para o qual esta condicao é satisfeita é 2.405.
Ou seja, para valores ' < 2.405 a fibra suporta apenas o modo HE |, que é conhecido como modo fundamental.

Na aproximacio de guiagem fraca, as componentes axiais E , e H , do modo fundamental sdo desprezaveis
e a sua polarizacao é aproximadamente linear. Assumindo uma polarizacio linear ao longo do eixo dos x, o campo

eléctrico do modo HE, | é dado por

_ { EJ,(pr)exp(ifz); r<a (5.27)

“ B pa) Ky K (@ar)expipe) r>a

A mesma fibra suporta um outro modo polarizado linearmente segundo o eixo dos y. Na situacgio ideal, em

que a geometria é perfeitamente cilindrica e o material € isotrépico, verifica-se uma degenerescéncia entre esses
dois modos polarizados ortogonalmente. Na pratica, contudo, um pequeno desvio da geometria cilindrica da fibra
ou uma ligeira anisotropia do material determinam uma quebra dessa degenerescéncia. Neste caso, a constante
de propagacdo f torna-se ligeiramente diferente para os modos polarizados nas duas direc¢Ges ortogonais. O grau

de birrefringéncia modal, J, é definido na forma:

s BB
2

o (5.28)

onde 7, (ny) é o indice de refrac¢ao para o modo polarizado segundo o eixo dos x (eixo dos ).

Devido as flutuacoes na geometria da fibra e na anisotropia do material, a birrefringéncia J nao se mantém
constante ao longo da fibra. Em consequéncia, a luz que é lancada na fibra com polarizagio linear adquire
geralmente uma polarizacao arbitraria ao propagar-se ao longo dessa fibra.

Através de um projecto apropriado da fibra, é possivel introduzir intencionalmente uma birrefringéncia
significativa, de modo a tornar possivel a propagacdo de luz com um estado de polarizacdo constante. As fibras

assim obtidas sdo designadas por fibras com manutencao da polarizacdo.

5.5. Atenuacao

Actualmente, as fibras opticas apresentam uma atenuacao que, embora sendo muito baixa, ndo pode ser
ignorada nos sistemas de comunicagio a longa distancia. Se representarmos por P a poténcia langada na entrada

de uma fibra com comprimento L, a poténcia a saida é dada por:
B, = Fyexp(-al) (5.29)

onde a é a constante de atenuacio. £ costume indicar a atenuacio da fibra em unidades de dB/km, usando a relaciio:

136



10, [£H
o, =——Ilogl —+ |=4.343cx 5.30
aB I g[ P ( )
Um vidro de silica ordinario apresenta, em geral, uma atenuagio bastante superior a 100 dB/km, a qual é
devida a absorcao por diversas impurezas, nomeadamente ides metalicos (ferro, crémio e cobre). Contudo, um
vidro de silica pura caracteriza-se por uma atenuacio bastante baixa, inferior a 1 dB/km, para comprimentos de

onda entre 0.8 e 1.8 um. Fora deste intervalo a atenuacao aumenta rapidamente.

Na Fig. 5.5 mostra-se uma curva tipica para a atenuacao de um vidro de silica de elevada qualidade em
func¢ao do comprimento de onda. A atenuacio apresenta valores minimos perto de 1.3 e 1.55 pm, atingindo neste
altimo caso um valor de 0.2 dB/km. As bandas préximas desses comprimentos de onda constituem as janelas que
tém sido usadas nos sistemas de comunicacao por fibras 6pticas.
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Figura 5.5 — Perfil tipico da atenuac¢@o em funcdo do comprimento de onda num vidro de silica de elevada qualidade.

A absorcao pelo material e a dispersao de Rayleigh constituem as contribuicoes dominantes para a atenuagao
residual da silica fundida. A silica pura absorve na regiao do ultravioleta, assim como na regido do infravermelho
além dos 2 pm. Contudo, mesmo uma quantidade relativamente pequena de impurezas pode determinar uma
absorcao significativa na regiao 0.5 - 2 um. A impureza mais importante que afecta a atenuaco nesta regido tem que
ver com a 4gua dissolvida no vidro, mais concretamente com o ido hidroxilo (OH "), cujo pico de absor¢io principal
se situa perto de 2.73 um. O pico na Fig. 5.5 perto de 1.37 um corresponde ao segundo harménico desse valor.

A dispersao de Rayleigh é um efeito de caracter fundamental, resultante das flutuacoes aleatérias da
densidade do material da fibra. Dai resultam flutuagoes locais do indice de refrac¢ao, que provocam a dispersao
da luz em todas as direccdes. Este efeito varia com A, de modo que se torna mais significativo para baixos
comprimentos de onda. A atenuacdo minima da fibra perto de 1.55 um é dominada pela dispersao de Rayleigh.

A atenuacdo de uma fibra 6ptica pode ficar a dever-se também as imperfei¢gdes geométricas introduzidas
durante o seu processo de fabricagdo, assim como ao seu excessivo encurvamento, que impossibilita a guiagem
completa da luz através de sucessivas reflexoes totais internas.

Uma fibra éptica ordinaria pode ser obtida aquecendo o centro de uma vara de vidro e puxando as suas
extremidades. Contudo, uma fibra ptica de qualidade, constituida por um nicleo e uma bainha e apresentando
um diametro constante, requer uma técnica de fabricacdo mais sofisticada. Existe para o efeito dois métodos:
estiramento a partir de uma vara pré-formada, a qual se apresenta ja constituida por um nicleo e uma bainha,
ou estiramento a partir de um cadinho duplo e concéntrico, no qual as duas partes sdo fundidas separadamente.
Deve notar-se que a temperatura a qual a silica pura apresenta uma viscosidade conveniente para esse efeito
(cerca de 2000° C) é bastante superior a do vidro ordinario (cerca de 1000° C). Depois de concluido aquele processo
de estiramento, é acrescentado um revestimento adicional de plastico para proteger a fibra.

A obtencao de um gradiente do indice de refrac¢ao devidamente controlado pode ser conseguido a partir

de uma pré-forma que ja apresente um indice de refraccao gradual. Esta graduacio do indice de refraccao da
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pré-forma é habitualmente realizada por difusdo de varios dopantes, tais como GeO, e P,O_, no vidro de silica.
Numa situagao tipica, a adicdo de 10% de algum destes dopantes é suficiente para aumentar o indice de refraccao

do vidro de 1.46 para 1.47.

5.6. Dispersao cromatica

A dispersao cromatica tem origem na interac¢do da onda electromagnética com os electrdes ligados de um
dieléctrico e manifesta-se através da dependéncia relativamente a frequéncia do indice de refraccao n(w), que se

relaciona com a constante de propagacao f(®) na forma:

n(w) = @ (5.31)

7

Geralmente, esta relacdo de dispersdo nao é conhecida de modo explicito. Contudo, a constante de

propagacdo ff pode ser expandida numa série de Taylor em torno do valor central f, :

d 10°

p@1=py+ L-0)+ S L (00 4 (5.32)
onde

ﬁfﬁl _ l[nm,d”}:”g:l (5.33)

dw c do c v,
e

2
f_ g o M /2da’ (5.34)
208 Vg

NaEq.(5.33), n,=n+ w(dn/dw) e v, representam o indice de refraccao de grupo e a velocidade de grupo,
respectivamente. O parametro /3, corresponde a dispersio da velocidade de grupo (DVG), a qual é muitas vezes

caracterizada pelo parametro D, dado por:

27
D= - B, (5.35)
O parametro D tem unidades de [ps/(nm.km)].

Verifica-se que D se anula para um dado valor do comprimento de onda A = 4, tendo-se geralmente
2, = 1.3 um. Contudo, a DVG depende nao apenas das caracteristicas do material, mas também das caracteristicas
geométricas da fibra éptica. Deste modo, o projecto apropriado de uma fibra 6ptica permite desviar o comprimento
de onda correspondente ao zero da DVG, ajustando-o ao comprimento de onda para o minimo de atenuacao,
A, = 1.55 um, obtendo-se assim a chamada, fibra com dispersdo desviada. E possivel igualmente obter uma fibra
com uma DVG muito baixa e quase uniforme numa banda de comprimentos de onda. A dispersao para ambos os

tipos de fibra encontra-se ilustrada na Fig. 5.6, juntamente com o caso de uma fibra standard.
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Figura 5.6 — Dispersao em funcdo do comprimento de onda para trés tipos de fibra.

No regime de dispersao normal, em que D<O0, as componentes de um impulso correspondentes as
frequéncias mais elevadas viajam mais lentamente que as componentes com frequéncias inferiores. No regime de
dispersdo anémala, onde D>0, acontece o oposto. As fibras dpticas convencionais exibem uma dispersao anémala
para comprimentos de onda superiores a 4 . Este regime de dispersdo apresenta um interesse especial, dado
que nele se torna possivel a formacao de impulsos dpticos com caracteristicas especiais - os chamados solitoes
brilhantes - com base num balanco entre os efeitos dispersivo e nao-linear.

Considere-se o caso de um impulso Gaussiano lancado na entrada da fibra, dado por:

2
E(0,1) = Ejexp _%[tij exp{—ia)ot} (5.36)
0

onde E é pico da amplitude, o, é a frequéncia da portadora e #; representa a meia largura no ponto 1/e da

. . , . . _ 12 —
intensidade. Ela esta relacionada com a largura total a meia altura, 7,,,, , do modo 7, = 2(In2) 7 = 1.6651.

Mostra-se no problema PR 5.8 que a largura do impulso, ¢ p» aumenta com a distancia de propagacao na forma:

22 =21+ B2/ (5.37)

A Eq. (5.37) mostra que o alargamento do impulso depende da DVG, /3, , da largura inicial, 7, e da distancia
de propagacao, z.

Mostra-se no problema PR 5.9 que a dispersdo cromaticaimpoe ao impulso um trinado, cujas caracteristicas
dependem do regime de dispersdo. No regime de dispersao normal a frequéncia instantanea do impulso numa
dada posic¢ao z aumenta com o tempo. Como consequéncia, o espectro na parte da frente do impulso é desviado
para o vermelho, enquanto na parte de tras é desviado para o azul. Por outro lado, no regime de dispersao anémala,
a frequéncia instantanea decresce com o tempo, Neste caso, o espectro na parte da frente do impulso é desviado
para o azul, enquanto na parte de tras é desviado para o vermelho. A Fig. 5.7 ilustra o trinado do impulso para os
dois regimes de dispersao.
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Fibra com dispersdo anomala

Figura 5.7 - Representac@o esquematica do trinado imposto ao impulso nos regimes de dispersio (a) normal e (b) anémala.

5.7. Fibras opticas microestruturadas

As fibras Opticas microestruturadas (FOMs), também designadas por fibras de cristal foténico, tém
sido desenvolvidas desde 1996 e representam uma nova classe de fibras, sendo caracterizadas pelo facto de
apresentarem uma bainha com multiplos micro-canais de ar, paralelos ao ntcleo. Estas fibras podem dividir-se
em duas categorias, consoante apresentem um nucleo sélido ou um nucleo oco.

As fibras microestruturadas com nucleo oco conduzem a luz devido a existéncia de bandas espectrais proi-
bidas na bainha, determinadas pela periodicidade da rede de micro-canais que as constitui. Quanto as fibras
microestruturadas com nucleo sélido, a propagacao da luz pode basear-se igualmente na existéncia de bandas proibi-
das na bainha ou, simplesmente, por efeito da reflexdo total interna, de modo analogo as fibras convencionais. Esta
situag@o é possivel desde que o indice de refraccio médio da bainha seja inferior ao indice de refrac¢do do nicleo.

A Fig. 5.8 ilustra uma FOM com nucleo sélido, exibindo uma rede hexagonal de micro-canais na bainha.
Uma MOF é caracterizda através de dois parametros estruturais: o didmetro dos micro-canais, d, e o espagamento

entre eles, A.

Figura 5.8 - Representa¢o esquematica de uma fibra ptica microestruturada com niicleo sélido, apresentando uma rede

hexagonal de micro-canais de ar na bainha.



O controlo dos parametros estruturais da bainha permite alterar significativamente as caracteristicas de
dispersao de uma FOM. A Fig. 5.9 mostra as curvas de dispersao para uma FOM de silica com uma rede hexagonal
de micro-canais espacados de i) 1um e ii) 2.5um, para valores diferentes dos diametros desses canais,. No caso
ii), as curvas de dispersdo tém apenas um zero de dispersao e apresentam um perfil aproximadamente uniforme
acima desse zero. Ja para o caso 1), as curvas de dispersao tém dois zeros de dispersdo, apresentando uma janela
com dispersdo anémala entre eles. Essa janela torna-se maior a medida que a razio (d/A) entre o didmetro dos

micro-canais e o espacamento entre eles aumenta.
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Figura 5.9 - Curvas de dispersdo para uma FOM com uma rede hexagonal de micro-canais espagados de 1) 1um e ii) 2.5um,

para A = 1.5um, para diferentes didmetros desses canais

Aumentando a razio (d/A) numa FOM com ntcleo sélido diminui o indice de refraccao médio da bainha,
ou seja, aumenta a diferenca entre os indices de refracgdo do nicleo e da bainha. Na situagdo limite, teremos o
nucleo rodeado praticamente por ar, o que proporciona um maior confinamento do campo 6ptico guiado pela
fibra. A intensidade do campo guiado é maxima neste caso, o que pode favorecer o desenvolvimento de diversos

efeitos ndo-lineares, nomeadamente para valores reduzidos do didmetro do nucleo.

5.8. Acopladores de fibra optica

Com a utilizacdo crescente das fibras opticas, sobretudo nos dominios das comunicacoes e dos sensores,
verifica-se a conveniéncia de usar varios componentes também de fibra 6ptica capazes de executar as mais variadas
fung¢bes: modulacao, divisao do feixe, amplificagio, controle da polarizacio, filtragem, etc.. Entre os componentes

mais importantes encontra-se o acoplador direccional de fibra 6ptica, representado na Fig. 5.10.
B(0) — g AT

— P

Figura 5.10— Representacdo esquematica de um acoplador de fibra éptica.
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O funcionamento do acoplador direccional de fibra 6ptica baseia-se no facto de o campo do modo
guiado se estender para além da interface nucleo-bainha. Assim, quando os nicleos de duas fibras se dispdem
paralelamente e se encontram suficientemente proximos um do outro, de modo a proporcionar a sobreposicao
dos seus campos modais, verifica-se a transferéncia periddica de poténcia entre as duas fibras. Essa transferéncia
é incompleta na situagdo mais geral em que as constantes de propaga¢do dos modos das fibras individuais sdo
diferentes. Contudo, pode-se conseguir a transferéncia completa de poténcia entre as duas fibras quando as suas
constantes de propagacao sao iguais. Neste caso, designando por P (0) a poténcia na fibra 1 no inicio da regido

de acoplamento (z = 0), tem-se que as poténcias nas duas fibras numa posi¢do z > 0 dessa regiao sdo dadas por:
R(2) = B(0)cos’ (1) (5.38)
P(2) = R(O)sen’ (sz) (5.39)

Nas equagdes anteriores x representa o chamado coeficiente de acoplamento, sendo uma medida da grandeza
da interaccgao entre as duas fibras. O coeficiente de acoplamento depende dos parametros das fibras, da separacao
entre os seus nucleos e do comprimento de onda da luz propagada.

A variacdo da constante de acoplamento com o comprimento de onda esta na base de uma outra aplicacao
bastante importante dos acopladores direccionais, no ambito da multiplexagem/desmultiplexagem por divisao de

comprimentos de onda (ver o problema PR 5.11).

5.9. Sensores de fibra Optica

As fibras opticas podem ser tteis também como sensores para a medicao de varias grandezas fisicas e
quimicas: pressdo, temperatura, campos eléctrico e magnético, corrente, rotagio, aceleracdo, deslocamento,
concentragdo quimica, pH, etc.. Os sensores de fibra éptica apresentam algumas caracteristicas que os tornam
particularmente atractivos: sdo imunes as interferéncias electromagnéticas, apresentam uma grande versatilidade,
podem proporcionar uma medi¢ao distribuida espacialmente, apresentam um tempo de resposta bastante curto,
a informacao de varios sensores pode ser combinada e transmitida a longas distancias através das proprias fibras
Opticas, etc..

Numa situacdo tipica, a luz lancada numa fibra dptica é guiada até a regido pretendida. Ai, alguma das
propriedades da luz (intensidade, fase, estado de polarizagdo ou frequéncia) é modulada pela grandeza que se
pretende medir, ap6s o que aluz modulada é enviada pela mesma ou por outra fibra para detecgio e processamento
da informacao. Quando a modulacio € realizada sobre a luz que se propaga na fibra, tem-se um sensor de fibra
intrinseco. No caso de essa modulagdo ser realizada quando a luz viaja entre duas fibras, tem-se um sensor de
fibra extrinseco. Em geral, o uso de fibras monomodo permite que o sensor apresente uma sensibilidade bastante
superior a proporcionada pelas fibras multimodo.

Na Fig. 5.11 mostra-se a representagao esquematica de um microfone 6ptico, que constitui um exemplo de
um sensor de fibra extrinseco. A membrana do microfone € posta a vibrar por uma onda sonora. No lado oposto,
essa membrana é iluminada por luz laser proveniente de uma fibra 6ptica. Uma outra fibra recebe a luz reflectida.

Devido a vibragdo da membrana, a direc¢do da luz reflectida varia, determinando assim uma modulagao da
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intensidade recebida pela segunda fibra. Na pratica, as dimensoes deste sensor podem ser bastante reduzidas,

permitindo a sua utilizacao em situagdes muito variadas.

Onda sonora

— _——

___"".‘.a- Membrana

—

Fibra emissora Fibra receptora

Figura 5.11 — Representacio esquematica de um microfone éptico.

O sensor interferométrico de Mach-Zehnder, representado na Fig. 5.12, é um exemplo de um sensor de fibra
intrinseco, que apresenta uma sensibilidade particularmente elevada. A luz proveniente de um laser passa por um
acoplador direccional (AD) que funciona como um divisor de feixe 50:50. Os dois feixes dai resultantes sdo guiados
por duas fibras monomodo, que constituem os dois bragos do interferémetro de Mach-Zehnder. Essas duas fibras
ligam-se as entradas de um segundo acoplador, idéntico ao anterior, o qual permite a sobreposicao dos dois feixes
e a posterior detecgdo e processamento do campo resultante. Um dos bracos do interferémetro é constituido pela
fibra sensivel a grandeza que se quer medir, enquanto que o outro braco é constituido por uma fibra que se procura
manter imune as perturbagdes externas. Quando a grandeza a medir actua na fibra sensivel, a fase da luz que nela se
propaga € alterada. Dado que a fase na outra fibra ndo é afectada, tem-se que a diferenca de fase entre os dois feixes
aquando da sua sobreposicao no segundo acoplador, vai determinar em geral diferentes valores para as poténcias

nas duas saidas desse acoplador. A medic¢ao dessas poténcias permitira caracterizar a grandeza em causa.

AD

Brago sensor
Braco de referéncia

ADP2

Figura 5.12 — Representacao esquematica do sensor interferométrico de Mach-Zehnder.

Indicando por Ay a diferenca de fase entre os dois feixes a entrada do segundo acoplador, tem-se que as

poténcias a saida desse acoplador sdo dadas por:

P=P, coszATV/ (5.40)

A
P, = P,sen’ TV/ (5.41)

onde P ¢é a poténcia inicial. Se Ay =0 rad toda a poténcia sai pela fibra 1, enquanto que se Ay =7 rad toda a

poténcia sai pela fibra 2. Para outros valores da diferenca de fase a poténcia divide-se pelas duas saidas.
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Dado que as variacoes da diferenca de fase Ay entre os dois bragos provocadas pela perturbacio externa é
geralmente bastante pequena (da ordem dos mili- ou microradianos), verifica-se que, se o sensor operar perto de
um extremo (minimo ou méximo) das poténcias P, e P, , a modulagdo dessa poténcia dai resultante serd minima.
O ponto de funcionamento que proporciona uma sensibilidade maxima corresponde a uma diferenca de fase
Ay =Q2p+ 1)% rad, sendo referido habitualmente como ponto de quadratura.

5.10. Problemas resolvidos

PR 5.1. Uma vara de vidro, com indice de refrac¢ao n=1.5, tem sec¢@o rectangular e encontra-se dobrada como
mostra a Fig. 5.13. Um feixe de luz colimada incide perpendicularmente a superficie plana A. Determine o valor

minimo da razao R/d para o qual toda a luz que entra na vara através da superficie A sai através da superficie B.

Figura 5.13 - Geometria para a propagacao de luz numa vara de vidro dobrada.

Resolugao

O raio de luz que entrando em A e se propaga junto a parede interna da vara de vido reflecte-se na parede
externa com o menor angulo de incidéncia a, como se representa na Fig 5.13, sendo o raio reflectido tangente a
parede interna. O raio em causa deve reflectir-se totalmente até chegar a B. Se & > 0, toda a luz que entra em A
sai em B. Assim, deve ter-se

sena > 1 ®
n

A geometria da Fig. 5.13 da:

sena = (2)
R+d
Assim, deve ser
R .1 (3)
R+d =n
Ou seja,
(R) L, (4)
d)un n-1
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PR 5.2. Considerando a geometria associada ao raio (2) da Fig. 5.2 e assumindo uma situa¢io proxima de reflexao
interna total, obtenha

a) uma expressao para a profundidade de penetracdo do campo evanescente na bainha e

b) o valor dessa profundidade de penetragdo para um angulo proximo do angulo critico e para um

comprimento de onda A=1.3 pm.

Resolucao

a) Considerando a geometria da Fig. 5.2 e usando a lei de Snell, tem-se:

sen @, =/1-cos’ 0, =

¢

Quando o angulo de incidéncia na interface niicleo/bainha excede o angulo critico a raiz quadrada na Eq.

(1) torna-se imaginaria, tendo-se:

n

senf, = [l -—Lcos’ 0, =+is (2

2
e O

2
n,

Nesta situaco, a amplitude da onda transmitida do ntcleo para a bainha pode-se escrever na forma:

E, = Aexpik,(zcos6, + ysend,)

Lo 3
= Aexp| ik, —zcos6, |exp(—k,y)
ny
A Eq. (3) mostra que a amplitude da onda transmitida para a bainha decresce exponencialmente na

direccdo do eixo dos y. A profundidade de penetragéo, £, é dada pelo inverso da constante de decaimento 0k, :

-1/2

1 2 }12 2
=—=|k;| Scos’ 6 -1 (4)
§ 69%2 2 [’1§ 1 )

b) Para um angulo préximo do angulo critico e para um comprimento de onda A=1.3um, tem-se ~10um.
Este resultado mostra que a bainha deve ser suficientemente espessa para conter a onda evanescente até que
a sua amplitude seja praticamente nula. Por outro lado, atendendo a que uma parte consideravel da energia
transmitida ao longo a fibra é transportada por essa onda evanescente, o vidro da bainha deve ser de qualidade

praticamente tdo elevada como o do nucleo, de forma a minimizar as perdas.

PR 5.3.
a) Demonstre a condi¢ao dada pela Eq. (5.7) para o produto do ritmo de transmissao, B, pela distancia L.
b) Calcule o ritmo maximo de transmissdo imposto pela dispersao intermodal para um sistema de
comunicagao que utilize fibras 6pticas com um comprimento L=10 km, tais que i) n, = 1.5 e n, = 1;ii)n, = 1.5

e n, = 1.497. Que conclusio pode tirar dos resultados obtidos?

Resolucao
a) Consideremos os dois casos extremos no que respeita aos raios guiados na geometria da Fig. 5.2. O
percurso mais curto ocorre para 6, = 0 e corresponde a uma distancia exactamente igual ao comprimento da

fibra, L. O percurso mais longo ocorre para o &ngulo 6,= 6, , dado pela Eq. (5.3), e corresponde a uma distancia

imax ’

L/seng, . Considerando a velocidade de propagagdo v = ¢/n, , o atraso temporal é dado por:
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AT—(—LJ—A »

A=uzr 2)

Num sistema de comunicaco por fibra éptica, o atraso temporal AT deve ser menor que o tempo de bit
r,= 1/B , sendo B o ritmo de transmissdo. Deste modo, usando a Eq. (1), tem-se que o produto do ritmo de

transmissao pela distancia percorrida deve satisfazer a condigao:

n,c 1c¢c
BL<—2—rn——
A n A (3

O resultado final é valido se n, = n,.

b) Usando a Eq. (1), tem-se

gL _ ¢ [ _send (4)
AT nL\1-seng,

Para os dois casos considerados, obtém-se

i) B<0.04 Mb/s
i) B<10Mb/s

Conclui-se, assim, que a introdu¢do de uma bainha com um indice de refraccdo préximo do indice de

refraccdo do nicleo permite aumentar significativamente o ritmo de transmissao.

PR 5.4. Considere uma fibra éptica em que o nicleo tem um indice de refraccdo n = 1.465 e a bainha tem um
indice de refracgdo n,=1.460. Determine

a) o valor maximo do raio do nicleo para se ter uma fibra monomodo e

b) o nimero de modos guiados quando esse raio é @ = 16um. Considere que a luz tem um comprimento de

onda 4=1.25um.

Resolucao
a) O valor maximo do raio que garante um regime monomodo para a fibra pode ser calculado a partir da

condicao
V =kyan! —n} <2.4048 )

Da Eq. (1) obtém-se o valor maximo do raio do nicleo para se ter uma fibra monomodo:

2.4048 2.4048

a< = (1.25%10°¢) =3.95um 2
ko —n2  27+[(1.465) — (1.46)?

b) O nimero V' da fibra cujo ntcleo tem um raio a=16um é:

2

=T -6,/ (1.465)2 — (1.46)* =9. 3
555 1o l0x 10 | (1465 — (1.46)* =9.73 (3

y
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Para uma fibra multimodo com um valor elevado de ¥, 0 nimero de modos guiados é dado aproximadamente
por V%2 . Neste caso, tem-se
1

n. =—V*=47 (4)

PR 5.5. Mostre que, no caso de uma fibra com indice gradual apresentando um perfil parabdlico (« = 2 na Eq.
(5.8)), um raio meridional lancado na fibra segundo um angulo 90 com o eixo tem uma trajectéria sinusoidal,

sendo a distancia ao eixo dada por

r = bsenfsen z
bcosd,

onde b=a/~/2A.

Resolugao
Para descrever a propagacao de um raio luminoso numa fibra com indice gradual, torna-se conveniente

considerar a equacgdo da eikonal em coordenadas cilindricas:

2 2 2
L 1
‘VL‘ = a + 1a + a =n’(r) )
o rop &
Verifica-se facilmente que a eikonal deste problema se pode apresentar na forma:
) 1/2
L(r,¢,z):.[[n2—j§—clzj dr +c,p+cz+c, (2)
onde C,,C ec, sao constantes.

A equacdo diferencial da trajectéria do raio luminoso é dada pela Eq. (1.53):

VL =n$ 3)
onde
s 9k @)
dR

e R é o vector de posicio. Exprimindo este vector em coordenadas cilindricas e diferenciando, obtém-se:

dR =drii, + rdgi, +dzil,

(5)
A partir das Eq.s (1)-(5), obtém-se as equagdes:
dr L c?
el el ©
2d¢ _ L _ @)
nr R~ c,
dz _d _ . (8)
dR & !
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Suponhamos que o ponto de incidéncia do raio a entrada da fibra coincide com a origem das coordenadas
(z =0, r =0, ¢ = 0) e que a direcgo inicial desse raio faz um angulo 6 com o eixo dos z. Nestas condigdes, as

constantes ¢, e ¢, obtidas a partir das Eq.s (7) e (8) sdo:
c,=0, ¢ =ncosb, 9

Verifica-se que, para as condi¢des de lancamento consideradas, o raio ndo abandona o plano meridional
¢=0.
Para se obter a trajectéria do raio, pode-se dividir, membro a membro, a Eqs (6) e (8), introduzindo depois

a Eq. (5.8) com a = 2 e substituindo as constantes ¢, e ¢, pelos resultados anteriores. Chega-se entio a equagio:

ﬂ \/SGI’IZQO —2A(r/a)2 (10)

dz cosd,

A integracao da Eq. (10) permite obter o resultado:

r=bsen @, sen| ——— (11
bcos b,

onde b=a/+/2A . Verifica-se da Eq. (11) que o raio tem uma trajectéria sinusoidal, com uma amplitude

A=bsend, eum periodo espacial z, =27bcos6), .
No caso de as condiges iniciais do lancamento do raio ndo serem as assumidas anteriormente, a solu¢ao

do problema sera mais complexa. Em geral, o raio guiado no se restringe ao plano meridional e apresenta uma

trajectéria helicoidal.
PR 5.6. No caso de uma fibra monomodo com um grau de birrefringéncia d, a poténcia é trocada periodicamente
entre os dois modos ortogonais. Encontre uma expressio para o periodo dessa troca.
Resolucao

Numa fibra monomodo birrefringente, o modo polarizado segundo o eixo dos x (1) tem uma constante de
propagacio S, =n.w/c ( B, =n,w/c),onden (n}) é o indice de refracgdo efectivo para esse modo. O eixo ao

longo do qual o indice de refraccao é inferior (superior) é chamado eixo rapido (lento), dado que a velocidade de

grupo é superior (inferior) para a luz que se propaga nessa direc¢ido. Tem-se
@
Ap=p.=p, =2 ony o
onde An, =n,—n,.
Considere-se o campo 6ptico dado na forma:

E(z) = exp(i,sz)[on + Eoyexp(— iAﬂz)j'] (2)

onde £ e EO}_ sao as amplitudes iniciais segundo os eixos x e y, respectivamente. A Eq. (2) descreve uma onda

cujo estado de polarizacao evolui de uma polarizacao linear para uma polarizaco eliptica, retornando depois
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a polarizagdo linear inicial quando Afz =27 . O periodo espacial deste processo, conhecido como distdncia de

batimento, é dado por:

2 A 3)

VR

sendo 0 dado pela Eq. (5.28).

PR 5.7 Mostre que o atraso relativo, Afj, no tempo de chegada da informagao nas frequéncias @, e ®,, depois

de percorrida uma distancia z, devido a dispersio da velocidade de grupo é dada por:
Ay =—f (0, -y )2
Comente o resultado em fun¢ao dos regimes de dispersao possiveis.

Resolucio
O atraso relativo, A7, no tempo de chegada da informacao nas frequéncias w, e ®, , depois de percorrida

uma distancia z, é dado pela diferenca dos respectivos tempos de propagacio, ¢ = z/vg (@):

z =lvg(a)2)_vg(w1)lz_ 1)

At =t —t, =
P2 (@) ve(@)  ve(@)v(a)

Expandindo no numerador v, (@) em série de Taylor em torno de uma dada frequéncia e assumindo

que, no denominador, v, (@) v, (0)= vz , tem-se

d
ﬁ(% @ )Z
Aty =——F—— (2)
Vg

Considerando que, pela Eq. (5.34), se tem

dv,ldo )
2= 2
Vg

a Eq. (2) pode apresentar-se na forma:
Aty ==, (‘02 ! )Z (49

A Eq. (4) mostra que a diferenca no tempo de chegada das duas frequéncias é proporcional a dispersao da
velocidade de grupo, £, , a diferenca das frequéncias, w,~ @, e a distancia de propagacio, z. Se f, < 0 (regime de
dispersao anémala) as frequéncias mais elevadas chegam primeiro, enquanto para 8, > 0 (regime de dispersao

normal) acontece o contrario.

PR 5.8. Considere um impulso Gaussiano, descrito pela Eq. (5.36), lancado na entrada (z = 0) de uma fibra
optica, que apresenta uma dispersdo da velocidade de grupo £, . Obtenha uma expressao para o impulso apds ter

percorrido uma distancia z na fibra e verifique que a largura do impulso evolui de acordo com Eq (5.37).
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Resolucao

O espectro do impulso a entrada da fibra é obtido calculando a transformada de Fourier da Eq. (5.36):

(-0,
2

© 2
1 1 E
EQ0,0)= e .[ Eexp —2(:] }exp{i(a)— , )t}dtz J%GXP{— )

0

Cada componente espectral do impulso percorre a distancia = na fibra com uma constante de propagacao
S(w), experimentando uma variagdo da fase f(w)z. Deste modo, a fun¢do que descreve o impulso no dominio do

tempo na posicio z é dada pela transformada de Fourier inversa:

E(z,t)= f E(0,0)expli[ f(0)z - ot ]}dw (2)
Expandindo a constante de propagacao até ao termo de segunda ordem, tem-se:

2
ﬂ(w)=ﬂo+%(a)—w@)+%%(w—%)z ®)

onde B, = (@), df/do=1/v, e d*p/de* = p,. Substituindo a Eq. (3) na Eq. (2) e realizando a integracio,

obtém-se

E (t—z/v )21 .
E(z,t)= 0 _exps— g7 lexp —P(z,t (4)
(z,1) (1+O_2)|/4 { 2t127(z) J {l[ﬂoz #(z )]}
onde 5
¢(Z,l)=600f+’f[f—z} —ltgfl(ﬂ) (5)
Vg 2
O
s ©
_bz @)
i
t(z2)=t;(1+0?) )

A Eq. (8) corresponde a Eq. (5.37) e d4 a meia largura no ponto 1/e da intensidade do impulso, tp(z), depois

de percorrida uma distancia z na fibra.

PR 5.9. Com base no resultado obtido no problema PR 5.8,
a) mostre que a energia do impulso se mantém constante durante a propagacao na fibra e

b) caracterize o trinado do impulso para os regimes de dispersdao normal e anémala.

Resolucao
a) A energia do impulso é proporcional ao produto do pico da intensidade pela largura do impulso. Da

Eq. (4) do problema PR 5.8 tem-se que o pico de intensidade numa posicao arbitraria z é dada por:
2
£

2
£ -
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Usando a Eq. (8) do problema PR 5.8, tem-se
2
2 E, /2 2
t - 7 to(“az)‘ =|Eo| % (2)

o]

Este resultado mostra que a energia do impulso numa posigao arbitraria é igual ao seu valor inicial.

£

b) A Eq. (5) do problema PR 5.8 mostra que a fase do impulso varia com o quadrado do tempo. Como
consequéncia, a frequéncia instantanea também varia com o tempo, pelo que o impulso se encontra trinado. A
frequéncia instantanea é dada pela derivada da fase em ordem ao tempo:

d z
(t) :d—fz @, +21{z—] (3)

Ve

A taxa de variacdo da frequéncia com o tempo é dada por

ow

ook (49

ot

Este resultado mostra que no regime de dispersdo normal (x> 0) a frequéncia instantanea numa dada
posicdo z aumenta com o tempo. Como consequéncia, o espectro na parte da frente do impulso é desviado para
o vermelho, enquanto na parte de tras é desviado para o azul. Por outro lado, no regime de dispersao anémala
(x <0) a frequéncia instantanea decresce com o tempo. Neste caso, o espectro na parte da frente do impulso é

desviado para o azul, enquanto na parte de tras é desviado para o vermelho. Estas caracteristicas do trinado sdo

ilustradas na Fig. 5.7

PR 5.10. Considerando as Eq.s (5.38) e (5.39) para as poténcias nas duas fibras de um acoplador, obtenha a
distancia minima z ao fim da qual
a) toda a poténcia se transfere da fibra de entrada para a outra fibra e

b) o acoplador funciona como um divisor de poténcia 50:50.

Resolucio
a) Verifica-se das Eq.s (5.38) e (5.39) que para

z=Qp+) 2, p=0,1,2,3, .. o))
2u

setem P (z) =0, P, (z) = P, (0), pelo que a toda a poténcia lancada na fibra 1 se encontra na fibra 2. A distancia

minima ao fim da qual isso acontece é dada por:
z =—
a (2
Esta distancia é conhecida como a distdncia de acoplamento.

b) Se a distancia de interacgdo do acoplador linear for z=L =7/4u, verifica-se das Eq.s (5.38) e (5.39)
que as poténcias a saida de cada uma das fibras do acoplador sdo

R(L)= (L) =3 RO), @
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Ou seja, o acoplador direccional funciona neste caso como um divisor de poténcia 50:50. Atendendo a que a
constante de acoplamento, 4, varia com o comprimento de onda, este resultado verifica-se, em rigor, apenas para

um determinado comprimento de onda.

PR 5.11. Mostre que, dada a dependéncia da constante de acoplamento com o comprimento de onda da luz, se pode

usar um acoplador direccional, para realizar a desmultiplexagem de um sinal com dois comprimentos de onda, 4, e 4, .

Resolucao
Considere-se um acoplador direccional com comprimento L constituido por fibras idénticas e com constantes

de acoplamento y, e u, , correspondentes aos comprimentos de onda A, e 4,, respectivamente, tais que

ml=pr )

ml=Q2p+ 1)% 2)

Nestas circunstancias, suponhamos que é lancada luz com esses dois comprimentos de onda em simultaneo

numa das fibras do acoplador, de tal modo que

B(0)= R(4,0)+FA(4,,0) 3)

Neste caso, tem-se para a luz com comprimento de onda 4, que
2
1)2(/1’13L):])1(//L1’0)56n (/u]L) :0 (4‘)
enquanto para a luz com comprimento de onda 4, se tem

Py(4y,L) = B(4,.0)sen* (4, L) = P (35,0 (5)

Ou seja, a luz com comprimento de onda 4, saira pela fibra de entrada, enquanto a luz com comprimento

de onda /, saira pela outra fibra, conseguindo-se assim realizar a desmultiplexagem desejada.

PR 5.12. Verifica-se ser possivel medir com o sensor interferométrico de Mach-Zehnder variacdes de fase da
ordem de 107 rad. Considerando que a luz usada tem um comprimento de onda 4 = 1um, determine a variagio

correspondente do comprimento da fibra.

Resolucao
Uma variacio da fase Ay corresponde a uma variacdo do comprimento da fibra dada por:

A=AV o
2r
—n
A

Considerando o valor referido para a variacdo minima da fase e supondo que o indice de refrac¢ao do

nucleo da fibra é n = 1.5, tem-se

10°¢

ANl= e
((2) (3.14) (1.5))

~ 1078
107" m (2)
10°¢

Ou seja, o sensor pode medir varia¢oes do comprimento da fibra da ordem de um décimo de pm.
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5.11. Problemas propostos

PP 5.1. Mostre que, no caso de uma fibra dptica em que os indices de refrac¢ao do nicleo e da bainha sao muito

préximos, a abertura numérica pode apresentar-se na forma dada pelas Eq.s (5.5) e (5.6).

PP5.2. A diferenca entre os indices de refrac¢io do ntcleo e da bainha de uma fibra éptica com indice em degrau

é de 1%. Calcule o indice de refrac¢ao do nuicleo sabendo que a abertura numérica da fibra é AN = 0.18.

PP 5.3. Num sistema de comunicagdes, a atenuagdo da fibra éptica é de 0.5 dB/km, existindo uma atenuagao
adicional de 1dB nas jungoes, cujo espacamento € de 10 km. Calcule o comprimento méaximo que esse sistema pode

ter, sabendo que a poténcia debitada pelo laser emissor é de 1.5 mW e que o nivel de deteccao limiar é de 2uW.

PP5.4. Considere uma fibra 6ptica com indice em degrau, tendo um ntcleo de raio @ = 25 um e indice de refrac¢ao
n, = 1.475, e uma bainha com indice 7, = 1.460.

a) Obtenha o valor maximo do angulo entre o raio e o eixo da fibra para o qual o raio pode ser guiado.

b) Calcule o nimero de reflexdes na interface niicleo/bainha que sofreria um raio propagando-se segundo
esse angulo numa fibra com 1 km de comprimento.

¢) Assumindo que em cada uma das reflexdes da alinea anterior se verifica uma atenuacao da poténcia de

0.01%, calcule a atenuacdo total em dB/km.

PP 5.5. Determine o ritmo maximo de transmissao determinado pela dispersao intermodal para o caso de uma

fibra 6ptica com as caracteristicas referidas no problema anterior e comprimento L =20 km.

PP 5.6. Assumindo que a solucao da Eq. (5.11) é dada na forma E_(r,4,z) = F(r)®($)Z(z), mostre que se tem

Z(z) = exp(ifiz) e O(P) = exp(im¢), onde f é a constante de propagacdo e m é um numero inteiro. Mostre ainda
que F(r) satisfaz a Eq. (5.13).

PP 5.7 Partindo das equacoes de Maxwell, obtenha as Eq.s (5.20)-(5.23) para as componentes transversais dos
campos eléctrico e magnético.

PP 5.8. Considere uma fibra éptica com indice em degrau, com um nticleo de raio @ = 4 pm e indice de refrac¢ao
n,=1.45, assim como uma diferenca relativa dos indices de refraccio A=3x10". Diga para que valores do compri-

mento de onda esta sera uma fibra monomodo.

PP 5.9. Explique a origem da birrefringéncia modal nas fibras dpticas e a razdo por que ela determina em geral

um alargamento temporal dos impulsos.

PP 5.10. A diferenca entre as constantes de propagacgio, Af, dos dois modos polarizados ortogonalmente numa
fibra birrefringente, dada pela Eq. (1) do problema PR 5.6, determina um atraso temporal relativo, Az, entre eles,
dado por At = Ld(Af)/dw, sendo L o comprimento da fibra.

a) Mostre que esse atraso temporal se pode escrever na forma:

dA
AT = L(Aneﬁw +w n‘”]
c d

@

onde A}’leﬁz =n,—n,.
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b) Desprezando a dispersio de An off » Mostre que o atraso temporal correspondente a distancia de
batimento, dada pela Eq. (3) do problema PR 5.6, é A7, =1/ f, sendo fa frequéncia da luz transmitida na fibra.

PP 5.11. Uma fibra com trés metros de comprimento é usada como sensor interferométrico das variagdes de
temperatura. O indice de refrac¢do da fibra é n = 1.46, enquanto que a variacao desse indice de refraccao com a
temperatura é dada pelo coeficiente dn/dT = 1.5 x 10° K'! e o coeficiente de expansio térmica linear do material
dafibraé o = 6.5 x 107 K. Determine a menor variacao de temperatura que pode ser detectada, assumindo que

a resoluc@o do sensor, em termos da variagdo de fase da luz, é de 0.1 rad.
PP 5.12. Um impulso Gaussiano propaga-se numa fibra dptica que apresenta dispersao da velocidade de grupo

B, =20 ps’km". Alargura do impulso aumenta com a distancia de propagacao de acordo com a Eq (5.37). Calcule

a distancia percorrida pelo impulso se a sua largura aumentar vinte vezes relativamente ao valor inicial 7, = 5 ps.
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Capitulo 6

LASERS E LUZ LASER

Oslasers constituem uma importante ferramenta no ambito da investigacao que se fazhoje em praticamente
todas as areas da ciéncia. Por outro lado, eles sio usados em variadas aplica¢des no nosso dia-a-dia, desde a leitura
de cédigos de barras até aos leitores de CD, ou no dominio da tecnologia, desde as comunicacoes Opticas até ao
processamento de materiais ou a medicina.

O processo de emissdo estimulada constitui a base do funcionamento do laser e foi demonstrado teorica-
mente por Albert Einstein ja em 1917. Contudo, apenas nos primeiros anos da década de cinquenta do século
passado, na sequéncia dos trabalhos de Charles H. Townes (EUA), Alexander M. Prokhorov e Nikolai G. Basov
(ex-Uniao Soviética), se conseguiu por a funcionar um dispositivo de microondas que amplificava a radiag¢do
através desse processo de emissdo estimulada. Este dispositivo foi designado por MASER, um acrénimo da
expressao inglesa “Microwave Amplification by Stimulated Emission of Radiation”. Em 1958, Charles H. Townes
e Arthur L. Schawlow publicaram um artigo em que discutiam a extensao dos principios do maser a regiao éptica
do espectro electromagnético. O funcionamento do chamado maser éptico, ou laser, foi conseguido pela primeira
vez por Theodore H. Maiman em Junho de 1960, que utilizou para o efeito, como meio activo, um pequeno cristal
sintético de rubi rosa, com faces paralelas entre si, perpendiculares ao eixo e espelhadas, instalado no eixo de uma
lampada de descarga gasosa helicoidal. Desde entao, uma grande variedade de lasers foram sendo desenvolvidos.

Qualquer tipo de laser é constituido por trés elementos essenciais (Fig. 6.1): (1) um meio activo, ou seja, um
conjunto de 4tomos, moléculas ou ides (designados a seguir genericamente por ‘a4tomos’) capaz de emitir radia¢io
6ptica; (2) uma fonte de bombeamento de energia capaz de excitar os atomos do meio activo; e (3) uma cavidade
de ressonante, constituida por dois espelhos nos quais o feixe de radiacao é sucessivamente reflectido, obrigando-o
a passar um numero elevado de vezes através do meio activo. Nas sec¢bes seguintes abordar-se-4 separadamente

cada um destes aspectos.

Bomba

d

Meio activo

Luz lasa;r>

WY U

/'

Espelhos

Figura 6.1 - Representacao dos elementos essenciais de um laser: o meio activo, a fonte de bombeamento

e a cavidade ressonante.
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6.1. O meio activo - Absorcao e emissao
de radiagao

Considere-se um meio activo cujos atomos sdo caracterizados por dois estados de energia: o estado
fundamental, de energia £, e um estado excitado, de energia £, (E, > E ). Na presenca de radiacio com uma
frequéncia

_E -E,

Vi = B (6.1)

onde /i = 6.626 x 107* J.s é a constante de Planck, verifica-se a passagem de alguns dtomos do estado fundamental

para o estado excitado. Este processo designa-se por absor¢do estimulada.

Uma vez no estado excitado, um &tomo pode emitir um fotdo de energia v, e regressar ao seu estado
fundamental. Este processo pode ocorrer sem qualquer influéncia externa, sendo entéo designado por emissao
espontanea, ou ser induzido por um fotao pré-existente com aquela mesma frequéncia, situacao em que se fala de
emissdo estimulada. Neste Gltimo caso, o fotdo emitido apresenta as mesma caracteristicas do fotao estimulante.

A Fig. 6.2 ilustra os trés processos de transi¢ao referidos.

By el E, e E, —_—
Fotao incidente ‘ Fotdo incidente { Fotio emitido
AN P " ANNASMA T
' : Foutrf\‘i!:) emitido b P
E"——-——é— o E, 437
(a) (b) (©

Figura 6.2 — Diagramas representativos dos processos de transicio num meio activo:
(a) absorcao estimulada, (b) emissao espontanea e (c) emissao estimulada.

As taxas dos trés processos de transigdo referidos anteriormente encontram-se relacionadas entre si. No
caso da emissdo espontinea, a taxa respectiva é proporcional ao nimero de adtomos, N, , que se encontram no

estado excitado de energia £, podendo escrever-se

dN dN,
(5,2,
esp dt esp

onde 4, € o chamado coeficiente de Einstein para a emissdo espontdnea. A populacao N, decresce com uma constante

detempo 7 = 1/4,, verificando-se um despovoamento do nivel com energia £, aumritmo V, / 7 e um povoamento

10°
do nivel com energia £, a0 mesmo ritmo. A constante 7 é conhecida por tempo de vida da emissdo espontanea.

As transigoes relativas a absor¢do ou a emissdo estimuladas ocorrem apenas na presenca de radiagdo
estimulante. No caso da absor¢ao, Einstein postulou que a respectiva taxa de transicao seria proporcional ao nimero
de atomos no estado fundamental, N, , e a densidade espectral de energia do campo incidente p(v,,) (unidades de

energia por unidade de volume por unidade de intervalo de frequéncia, Jm = Hz ') com frequéncia Vi

dNO le
“\ar = dr :BmNop(Vlo) (6.3)
ab ab
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onde a constante de proporcionalidade, B, , ¢ o chamado coeficiente de Einstein para a absor¢do estimulada. De
modo semelhante, a taxa de transicao para o processo de emissao estimulada é proporcional ao nimero de atomos

no estado excitado, /N, , e a densidade espectral de energia do campo incidente p(v, ) , tendo-se:

dN, dN,
7 =17 =B,,N,p(v,) (6.4)

onde B, é o chamado coeficiente de Einstein para a emissdo estimulada.

Numa situacao de equilibrio térmico, verifica-se um balanco entre os trés processos anteriores, traduzido pela
condicio

A10N1+ BIONlp(VIO):BOlNop(VIO) (6.5)

As populagdes N, e N, encontram-se relacionadas através da chamada distribuicdo de Boltzman:

N, E, -E,
AT S t 1}
N, kyT

(6.6)

hv,,

=exp| —
kT

onde 7'é a temperatura absoluta e &, é a constante de Boltzman.

Das Eq.s (6.5) e (6.6) tem-se
A

10

B, (NO/NI) ~- B,

P,y

4 6.7
B, exp(hv,/ k,T) = B,

Por outro lado, a densidade espectral de energia p(v) é dada pela lei da radiacdo de Planck:

o) = 8hv, 1 (6.8)
P e exp(hv,,/ k,T) =1
As Eq.s (6.7) e (6.8) conduzem a igualdade:

4, _ thvfo 1 (6.9)
B, exp(hv,,/ k,T)— B, e exp(hv,,/ k,T) — 1
A Eq. (6.9) é satisfeita quando
8mhv’
A, = o (6.10)
3 10
c

B, =B, (6.11)
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As Eq.s (6.10) e (6.11) sao designadas por relagoes de Einstein. Elas podem ser generalizadas a um par

arbitrario de estados de energia atémicos, E, e Ej (Ej > E), substituindo £, por E e E, por Ej

Da discussio anterior ressaltam duas ideias importantes para se conseguir o funcionamento de um laser.
A primeira tem que ver com a existéncia de um processo, a emissao estimulada, que proporciona a amplificacao
da luz. A segunda refere-se a necessidade de se conseguir a inversdo da populacdo nos dois niveis de energia
dos atomos do meio activo, de tal modo que o efeito dessa emissdo estimulada seja superior ao efeito contrario,

devido a absorcao estimulada.

6.2. Coeficientes de albsorgao e de ganho

Considere-se um feixe colimado de luz monocromatica, de frequéncia v, = (E/. — E,)/h, que se propaga
na direc¢ao do eixo dos z e passa por um meio activo homogéneo. A variacao da intensidade entre dois planos

situadosem z e z +4z é dada por:
Al(z)=1(z+Az)-1(2)
=—al(z)Az (6.12)

onde a é o chamado coeficiente de absor¢do e o sinal menos traduz a reduco da intensidade determinada pela
absorgao.

A Eq. (6.12) pode ser escrita na forma de uma equacao diferencial:

dl(z)
dz

=—al(z) (6.13)

A solucao da Eq. (6.13) é dada por:

1(z) =1(0)exp(—az) (6.14)
sendo /(0) a intensidade a entrada do meio activo. A Eq. (6.14) mostra que aintensidade decresce exponencialmente
quando o feixe se propaga num meio em que o efeito da absor¢ao é dominante.

Se, ao passar pelo meio activo, o niimero de emissdes estimuladas exceder o niimero de absorcoes, a
intensidade aumentara em vez de diminuir. O nimero de emissoes estimuladas depende da densidade espectral
de energia p(v), que se relaciona com a intensidade na forma

I(v
p(ry =1 (6.15)
c
Assumindo que o feixe é constituido por radiacao perfeitamente monocromatica, mostra-se no Problema

PR 6.3 que a evolugio da intensidade no meio activo é dada por
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1(z) = 1(0)exp(fz) (6.16)

onde f é o chamado coeficiente de ganho, dado por:

CZ

B=(n;-n) - (6.17)

sendo n, e n, as densidades de populago nos niveis de energia inferior e superior, respectivamene.

Pode-se ver da Eq. (6.17) que se n, > n, entao f épositivo e a intensidade aumenta com a distancia. Este pro-
cesso, que consiste na amplificacao da luz por emissao estimulada, constitui a base para o funcionamento dos lasers.

A amplificacao da luz por emissao estimulada é possivel apenas quando a populacao do nivel superior de
energia excede a populagdo do nivel inferior, condicdo conhecida por inversdo da populagao. Esta situacdo pode
ser atingida através de um bombeamento adequado do meio activo. O facto de o coeficiente de ganho dado pela
Eq. (6.17) ser inversamente proporcional ao quadrado da frequéncia v, indica que sera mais dificil construir lasers

emitindo luz na regido do ultravioleta do que na regido do infravermelho.

6.3. Bombeamento do laser

Considerando um par arbitrario de estados de energia El. e E] (Ej > E,. ), a Eq. (6.6) assume a forma:

| E. —E AE,
Niexp ~ E T el - AL (6.18)
N, kg T kT

1

onde AEﬂ. = Ej—E,. . Quando k,T « AEﬂ. arazdo anterior é bastante pequena e praticamente nao existem atomos
no estado excitado. Por outro lado, para temperaturas suficientemente elevadas, situagao em que kT » AE,, a
populacao no nivel de energia Ejaproxima—se da populagdo no nivel E . De qualquer modo, numa situagao de
equilibrio térmico, a populacdo no nivel de energia Ej nunca pode ser superior & populacdo no nivel £, . Para se
conseguir a inversao de populaco, os &tomos devem ser excitados - ou bombeados - por recurso a uma fonte
externa de energia.

O bombeamento do meio activo de um laser pode ser de natureza dptica, eléctrica, quimica ou térmica. No
caso dos lasers gasosos, o método de bombeamento mais habitual consiste numa descarga eléctrica. Em alguns
lasers deste tipo, os electroes livres, gerados no processo da descarga, colidem e excitam directamente os atomos
do meio activo. Noutros lasers gasosos, a excita¢ao ocorre através de colisdes inelasticas entre atomos. Neste
caso, usa-se uma mistura de dois gases, tais que as duas espécies de 4tomos tém estados excitados idénticos. Um
exemplo é o laser de He-Ne, no qual os atomos de néon (Ne) sao excitados por transferéncia de energia fornecida
pelos atomos de hélio (He) que se encontram num estado meta-estavel. Os atomos de hélio recebem essa energia

dos electroes livres que com eles colidem.
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Transigdo laser

Bombeamento

E"‘ll N 0

N

Figura 6.3 — Distribuicio da populagdo num sistema de trés niveis.

Um dos esquemas possiveis para o bombeamento do laser faz uso de trés niveis de energia, como se
representa na Fig. 6.3. Quando os atomos do meio activo sio excitados pela fonte de bombeamento, uma parte
deles passa do estado fundamental ao estado com energia mais elevada, £,, de onde decaem depois para o estado
meta-estavel de energia £ . Verifica-se a inversdo da populagdo quando a populacao deste tltimo estado é superior
a do estado fundamental. Para que esta situacio seja atingida facilmente é necessario que a transicio de £, para

E sejarépida.

»

klj Nq

[
Decaimento rapido
E,
e N,

Transigao laser

E,

Nl
N)Aecaimenm rapido
!10 A‘

0

Bombeamento

N

Figura 6.4 — Distribuicdo da populacdo num sistema de quatro niveis.

No caso de um sistema de trés niveis, sao necessarias poténcias de bombeamento relativamente elevadas,
dado que o estado final da transicao laser é o estado fundamental e mais de metade dos a&tomos neste nivel devem
ser bombeados para o estado excitado de modo a verificar-se a inversdo da populacao. Contudo, a poténcia de
bombeamento pode ser bastante reduzida no caso de um esquema com quatro niveis, como se ilustra na Fig, 6.4.
Neste caso, os &tomos do estado fundamental sdo excitados através do bombeamento para o nivel de energia mais
elevado, E,, apartir do qual eles decaem para o estado meta-estavel de energia E| . Se as transicoes de £, para
E, e de E para E forem rapidas comparativamente com a transi¢do de E, para E , a inversdo da populacdo,
nesta ultima transicao, pode ser conseguida com valores modestos da poténcia de bombeamento.

Os esquemas de bombeamento de alguns tipos de lasers sdo bastante mais complexos que os esquemas de
trés ou de quatro niveis referidos anteriormente. Contudo, estes esquemas podem constituir excelentes modelos

para um grande nimero de lasers reais.
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6.4. Realimentacao Optica

A amplificagdo proporcionada pelo meio activo quando a luz o atravessa uma tnica vez é, em geral,
relativamente baixa. Contudo, esta limitacao pode ser ultrapassada usando espelhos, com os quais o comprimento
efectivo do meio amplificador se torna um multiplo elevado do comprimento do laser. Os espelhos proporcionam
a realimentacgdo 6ptica do sistema e formam uma cavidade éptica ressonante que suporta oscilagoes electro-
magnéticas com a frequéncia da transicao laser. A oscilagao tem origem na emissao espontanea de radiacao, que
é posteriormente amplificada, até se atingir um certo estado estacionario. No regime estacionario, toda a energia

adicional proporcionada pelo processo de emissao estimulada serve para alimentar a poténcia de saida do laser.

6.4.1.Condicao limiar de um laser

Considere-se que o meio activo preenche completamente a regido entre os dois espelhos, £, e £, do laser e
que o bombeamento ¢é uniforme. Quando a radiac¢io se desloca desde o espelho £ até ao espelho E, , a intensidade

aumenta desde o seu valor inicial / até um valor I dado por:

I=Iexp{f-a, )} (6.19)

onde d é a separagdo entre os espelhos, [ é o coeficiente de ganho e @, sdo as perdas devidas a dispersdo e
eventual absor¢do por parte dos constituintes ndo-activos do laser. Depois da reflexido no espelho £, , a razio
entre a intensidade reflectida e a intensidade inicial /,é dada por r22 exp{(ﬁ -a, )d}, sendo 7, o coeficiente de
reflexdo em amplitude do espelho. Apés uma volta no meio activo e uma reflexao no espelho £, a razio entre as

intensidades final, I/ , € inicial, 7, é dado por:

% =G= rlzrz2 exp{2(ﬂ -, )d} (6.20)
0

onde 7| o coeficiente de reflexdo em amplitude do espelho £ .

O parametro G, dado pela Eq. (6.20), representa o ganho liquido em poténcia numa volta do laser. Se
G > 1, verifica-se a amplificacao da radia¢do com frequéncia igual a frequéncia de ressonincia do laser, o que
corresponde a um aumento das oscilagdes da cavidade. Por outro lado, se G < I, as oscilagbes no interior da
cavidade acabam por desaparecer. A condigdo limiar de oscilagao do laser é dada por G = 1. Apenas quando esta
condigao é verificada durante um certo tempo a poténcia de saida do laser adquire um valor estacionario.

Fazendo G = 1 na Eq. (6.20) pode-se obter o seguinte resultado para o valor limiar do coeficiente de ganho, £, :
1 1
ﬂlim zap +Eln 7 :ap +a (6.21)

nr

onde
a ——1 In —1
0 d nry (6.22)
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Verifica-se da Eq. (6.21) que, no regime estacionario, o ganho deve ser igual a soma das perdas por absor¢ao
pelo material (ozp) com as perdas correspondentes a emissdo de luz para o exterior (a). A estabilizagdo do

coeficiente de ganho no seu valor limiar é habitualmente referida como saturagao do ganho.

6.4.2. Modos longitudinais

Os espelhos de um laser formam uma cavidade ressonante na qual a luz pode ser armazenada por multiplas
reflexdes entre eles. Apenas para certas frequéncias da luz essas sucessivas reflexdes estdo em fase, ou seja, a

diferenca de fase entre elas satisfaz a relaco:
Ap=2nmp, p inteiro (6.23)

pelo que as ondas reflectidas constituem réplicas das ondas iniciais. A condi¢ao para que isto se verifique é que o

comprimento da cavidade seja um multiplo de meio comprimento de onda:

d= pi = pﬁ, p inteiro (6.24)
2 2n
onde A, é o comprimento de onda da luz no vazio e 1 é o indice de refaccdo do meio activo. Dado que p pode
ser um numero inteiro qualquer, existem varios comprimentos de onda, dentro da linha de transi¢do do laser,
que satisfazem a condigdo anterior. Os campos correspondentes a esses diferentes comprimentos de onda sao

designados por modos longitudinais, ou axiais. A frequéncia destes modos é dada por:

c c
V=—=p— (6.25)
A 2nd
Desprezando-se a dependéncia do indice de refraccdo com a frequéncia, a diferenca de frequéncias entre
modos longitudinais vizinhos é dada por:

C
AV = Vp+1 _Vp = an (626)

Se se considerar um laser gasoso, em que n = 1, e um espacamento entre os espelhos d = 30 cm, obtém-
-se para a separacdo entre as frequéncias modais o resultado Av = 500 MHz. Dado que a largura das linhas de
transicao laser é geralmente bastante superior a 500 MHz, verifica-se a possibilidade de o laser emitir luz em

véarias frequéncias discretas, separadas entre si de ¢/(2d).

6.4.3. Condicao de estabilidade da cavidade ressonante

Em muitos casos, a cavidade ressonante é constituida por espelhos esféricos, dado que eles proporcionam
geralmente uma configuracdo mais estavel para o confinamento da luz comparativamente a outros tipos de
espelhos. Na Fig. 6.5 representa-se o caso em que esses espelhos tém raios R, e R, e se encontram centrados
no eixo dos z, separados de uma distancia d. Os espelhos podem ser concavos (R < 0) ou convexos (R > 0). Um

espelho plano corresponde ao caso R =c0.
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Pode-se usar o método matricial, apresentado no Capitulo 2, para determinar as condi¢oes de confinamento
dos raios luminosos na cavidade ressonante. De facto, uma cavidade ressonante é um exemplo de um sistema

optico periddico, dado que os raios luminosos percorrem o mesmo sistema repetidamente.

Figura 6.5 — Geometria de uma cavidade ressonante constituida por espelhos esféricos concavos.

Mostra-se no problema PR 6.6 que a condic¢ao de estabilidade para a cavidade ressonante é dada por:

0<gg<l (6.27)
onde
d d
8 R, &> R,

sa0 os chamados parametros g da cavidade. A condigao (6.27) também é conhecida como condigdo de confinamento.
Quando esta condi¢do ndo é verificada a cavidade ressonante diz-se instdovel. No caso de se ter alguma das

igualdades na Eq. (6.27) a cavidade é condicionalmente estdvel.

0.5. Taxa de bomlbeamento e intensidade
do campo Optico

Considerando as transi¢cdes dominantes para o caso de um sistema de quatro niveis, analogo ao representado
na Fig. 6.4, mostra-se no problema PR 6.10 que, no estado estacionario, a diferenca de populacao N, — N, dos

dois niveis envolvidos na transi¢ao lasers é dada por:

N,-N, = R(4,,—4,)

- I
AIO |:A21 T A21 (C):|

onde R é a taxa de bombeamento do nivel fundamental para o nivel de energia mais elevado, / é a intensidade do

(6.29)

campo 6ptico na cavidade do laser, ¢ é a velocidade da luz no vazio, 4,, , 4, e B,, sdo os coeficientes de Einstein

217
para as transicoes entre os niveis 0, 1, e 2. Verifica-se da Eq. (6.29) que apenas quando 4,, < A4, o numerador é

positivo e se consegue atingir a inversao da populagao.
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Abaixo do limiar, a emissao estimulada a partir do nivel superior da transicao laser é pequena, dado
que a intensidade na cavidade, /, é também bastante baixa. Nestas circunstancias, a Eq. (6.29) pode ser,

aproximadamente, escrita na forma:

N,-N, = R(I—IJ (6.30)

Verifica-se que, neste regime, a diferenca de populag¢do aumenta linearmente com a taxa de bombeamento.

No limiar, a intensidade / é ainda relativamente pequena, pelo que a diferenca de populagio nesse caso,
AN, , é dada pela Eq. (6.30) com R = R, . O valor limiar da taxa de bombeamento, R,, é dado entdo por:
A

R =AN, An Ao (6.31)
AIO_AZI

No estado estacionério, a diferenca de populagio ndo excede o seu valor no limiar, AN, . E de notar que o
coeficiente de ganho £ dado pela Eq. (6.17) é proporcional a diferenca de populagdes e que o seu valor limiar é
determinado pela soma das perdas por absor¢do pelo material com as perdas correspondentes a emissao de luz
para o exterior, como se mostra na Eq. (6.21). Deste modo, para taxas de bombeamento superiores ao respectivo

valor limiar, tem-se da Eq. (6.29) que:

R(l_ 21 J
A
AN, = N 19/ | para R>R, (6.32)
I
A21+Bm(
c

AN, b

0

Figura 6.6 — Diferenca de populacio e intensidade do campo dptico na cavidade em func@o da taxa de bombeamento.

R

Usando as Eq.s (6.31) e (6.32), pode-se escrever a intensidade do campo 6ptico na cavidade em funcao da

taxa de bombeamento R do modo seguinte:

I, = R-R LA (6.33)
Rl B 21

21

Verifica-se deste resultado que a intensidade aumenta linearmente uma vez ultrapassada a condi¢ao limiar.

Na Fig. 6.6 representa-se AN e [ = em fungdo da taxa de bombeamento R.
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0.0. Lasers semicondutores

Os lasers semicondutores foram inventados em 1962, mas a sua utilizacdo tornou-se corrente apenas
na década de setenta do século XX, depois de se ter conseguido o seu funcionamento continuo a temperatura
ambiente. O desenvolvimento que experimentaram desde entdo foi de tal ordem que eles sdo, actualmente, de
entre todos os tipos de lasers, os mais importantes do ponto de vista econémico.

As aplicactes dos lasers semicondutores sdo actualmente muito variadas, podendo referir-se, nomeada-
mente, a sua utilizacdo no ambito dos sistemas de comunicacdo por fibra éptica, nos leitores dos cédigos de
barras, nas impressoras laser, nos leitores de CDs, etc.. No caso dos sistemas de comunicacao por fibra dptica,
a preferéncia pelo lasers semicondutores tem que ver com as suas reduzidas dimensées (tipicamente inferiores
a 1 mm), area de emissao compativel com as dimensdes do nucleo das fibras, elevada eficiéncia, adequado

comprimento de onda da luz emitida e possibilidade de modulagdo directa a frequéncias bastante elevadas.

6.6.1. Amplificagao optica num semicondutor

Se E, e E, forem as energias dos estados do electrdo na banda de valéncia e na banda de conducao,
respectivamente, a probabilidade de ocorrer a absor¢ao de um fotdo com energia 4v = E,— £, numa situagdo de

quase-equilibrio é dada por:

P, )= f(ED[I= fo(Ey)] (6.34)
onde f e f representam as fungdes de distribui¢do nas bandas de conduc@o e de valéncia, respectivamente,
dadas por:

1

J(E)= W (6.35)

e
! (6.36)

SoB)=——F577
14+ EE/RT

sendo £ . © E 4 OS chamados quase-niveis de Fermi. E de notar que, se /., (E,) representa a probabilidade da
ocupacao de um estado na banda de valéncia com energia £, [1 — fL(Ez)] da a probabilidade de um estado na

banda de conducdo com energia F, estar desocupado.

A probabilidade de ocorrer a emissdo de um fotdo com a mesma energia #v = £, — E| é dada por:

P ()= fu(E)1- £, (E))] (6.37)

O processo de emissdo dominara sobre o processo de absorcao se se verificar a condigdo:

P (V)>P, (V) (6.38)
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Usando as Eq.s (6.34)-(6.37), a Eq. (6.38) resulta na condicao:

E —E, >hv (6.39)

Dado que deve ter-se hv > E, , sendo E, a banda de energia proibida, segue-se que

E,~E, >E, (6.40)

A Eq. (6.40) representa a condigdo necessaria para se ter amplificacdo éptica num meio semicondutor,
sendo equivalente a condi¢ao de inversdo da populacdo para um sistema atémico. Pode verificar-se que nao é

possivel ter amplificagdo 6ptica num semicondutor em equilibrio térmico.

6.6.2. Diodos emissores de luz e lasers semicondutores

A aplicagdo de uma diferenca de potencial externa no sentido directo a uma juncao p-n, da origem a
uma corrente através da juncao nesse mesmo sentido: os electrdes do lado n da juncao sdo injectados na regiao
p, enquanto que as lacunas da regido p sao injectadas na regiao n. Neste processo, verifica-se a recombinacao
destes dois tipos de portadores, dando origem a radiacao éptica através do processo de emissao espontanea. Este
fenémeno € designado por electroluminiscéncia de injec¢ao, sendo a base do funcionamento dos diodos emissores
de luz (LEDs, de Light-Emitting Diodes).

A poténcia emitida por um LED aumenta continuamente com a corrente de injeccao, como se mostra na
Fig. 6.7 Contudo, para correntes de injec¢io elevadas, a poténcia de saida satura, podendo atingir entao valores

na ordem de alguns miliwatts.

&
g 10 LASER  _ —
E
& LED
B -
6 -
4}
2F
0 N . . Pzl
] r 200 400

! I (mA)

tim

Figura 6.7 — Variacdo da poténcia emitida por um LED e por um laser semicondutor em funcio da corrente de injeccao.

O espectro da luz emitida por um LED é geralmente bastante largo (da ordem de 30-80 nm). Este facto
determina uma dispersao elevada quando o LED é usado em sistemas de comunicacao por fibra éptica. Por outro
lado, o facto de a emissdo espontanea ser aleatoria e se verificar em todas as direc¢oes faz com que a luz emitida
por um LED nao seja muito direccionada, apresentando angulos de divergéncia que variam desde cerca de 30°,
perpendicularmente a juncéo, até cerca de 120°, paralelamente a essa mesma juncédo. Esta caracteristica torna o

acoplamento da luz as fibras dpticas monomodo pouco eficiente.

166



Em geral, ndo é possivel satisfazer a condigdo (6.40) quando a jungdo p-n é formada a partir de
semicondutores do tipo n e do tipo p dopados moderadamente. Contudo, essa condicao pode ser satisfeita no
caso de ambos os semicondutores estarem fortemente dopados (~ 0.1%) e de a diferenca de potencial aplicada ser
também suficientemente elevada. Esta é a base do funcionamento dos lasers semicondutores.

Noslasers semicondutores, as faces nas extremidades do cristal sao cortadas paralelamente entre si e conveniente-
mente polidas, de modo a formar uma cavidade ressonante. A grande diferenca entre os indices de refrac¢io no semicon-
dutor (n = 3.5) e no ar (n = 1.0) faz com que a interface entre os dois meios apresente uma reflectancia de cerca de 30%,

que ¢ suficiente para constituir aquela cavidade. Na Fig. 6.8 indicam-se as dimens6es tipicas de um laser semicondutor.

Faces polidas

Feixe laser

Figura 6.8 - Representacao esquematica de um laser semicondutor.

Como foi discutido na Secgdo 6.5, um laser caracteriza-se pela existéncia de um valor limiar para a taxa de
bombeamento. No caso de um laser semicondutor, o bombeamento é realizado através da corrente de injecgao.
Na Fig. 6.7 mostra-se a variacao tipica da poténcia a saida do laser com essa corrente. Verifica-se que abaixo de
um determinado valor limiar da corrente, a poténcia emitida pelo laser é bastante baixa, enquanto que acima
desse valor a poténcia emitida aumenta significativamente. Na realidade, o declive da curva acima do limiar
é bastante superior ao da curva abaixo desse limiar. Abaixo do limiar, a luz emitida é devida essencialmente a
emissdo espontanea e o laser semicondutor comporta-se de modo semelhante a um LED.

Um parametro importante para caracterizar um laser semicondutor ¢ a sua eficiéncia, dada pelo declive
da curva da Fig. 6.7 acima do limiar. Se d[ representar a variacio da corrente através do diodo, entdo a variagao
do ntimero de electrdes injectados por unidade de tempo no laser é dl/e, onde ¢ é a carga do electrdo. Se dP
representar a variacdo correspondente na poténcia de saida do laser, entdo a variacado do nimero de fotdes é

dP / hv, onde v é a frequéncia da radiagfio. A eficiéncia quintica externa do laser é definida por:

_dP/hv_ e dP

M=l e ~hvdl (6.41)

Os valores tipicos de 77 para lasers semicondutores que funcionam no modo continuo situam-se entre 0.25 e

0.6. A partir da Eq. (6.41) pode traduzir-se relacdo entre a poténcia a saida do laser e a corrente de injeccao na forma:
hy (6.42)
P=777(1—1hm) :

onde [ é a corrente limiar, cujos valores tipicos sdo da ordem de 25 — 250 mA. A corrente limiar varia com a

temperatura, sendo essa dependéncia dada por:
1, (T) =IoeT/Tﬂ (6.43)

onde /; é uma constante e 7;, é a chamada temperatura caracteristica do diodo.
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Quando ¢é utilizado no ambito dos sistemas opticos de comunicacio, torna-se necessario modular o feixe
emitido pelo laser. Uma das propriedades mais interessantes dos lasers semicondutores é a possibilidade de
realizar directamente essa modulacdo através da corrente de injeccao. De facto, quando se varia esta corrente, a
populacgao de electroes e de lacunas na cavidade do laser também varia. Como consequéncia, o ganho ¢ alterado,
o0 que faz variar, por sua vez, a poténcia emitida pelo laser.

A dinamicadamodulacao directa de um laser semicondutor é determinada por varios factores, nomeadamente
pelos tempos de recombinagio dos portadores e pelo tempo de vida dos fotdes na cavidade do laser. O tempo de
recombinacao dos portadores devido a emissdo estimulada depende da densidade de fotdes dentro da cavidade e
é da ordem de 10 ps. Quanto ao tempo de vida dos fotGes, ele corresponde ao tempo médio que um fotdo demora

dentro da cavidade do laser antes de ser absorvido ou de ser emitido para o exterior, sendo dado por:

7, = n (6.44)
Biim

onde Sy, € o valor limiar do coeficiente de ganho, dado pela Eq. (6.21). Considerando valores tipicos para os
parametro envolvidos, tem-se 7,~2ps.
Devido ao curto tempo de vida dos portadores no processo de recombinagio estimulada, os lasers

semicondutores podem ser modulados com ritmos superiores a 20 GHz.

6.6.3. Lasers semicondutores de heterojuncao

Na sua versao mais simples, o laser semicondutor usa o mesmo semicondutor em ambos oslados dajuncao p-n,
sendo, por isso, designado por laser de homojungdo. Este tipo de laser foi inventado em 1962 e o seu funcionamento
s6 é possivel no regime pulsado, dado que os valores tipicos das suas correntes limiares sdo da ordem de algumas
dezenas de amperes. Deste modo, o funcionamento em regime continuo seria catastrofico para estes lasers.

Actualmente, a configuracdo basica utilizada na grande maioria dos lasers semicondutores é baseada
numa dupla heterojungdo. A heterojuncao é formada entre dois semicondutores distintos, apresentando bandas
proibidas diferentes. Os materiais tipicos para este efeito sao GaAs e AlGaAs. Para se obter uma dupla heterojuncao,
coloca-se uma camada fina de um dado material semicondutor (por exemplo, GaAs) entre duas camadas de
material semicondutor com uma banda proibida maior (por exemplo, AlGaAs). Na Fig. 6.9 apresenta-se uma

representacio esquematica de um laser com dupla heterojuncio.

I “__ ©
p-AlGaAs
N
n-AlGaAs
| ’ '
(a) (b) (c)

Figura 6.9 - (a) Diagrama de um laser semicondutor com dupla heterojuncao, no qual a camada activa de GaAs
se encontra intercalada entre as regides p e n de AlGaAs; (b) variagdo do indice de refrac¢io na heterojuncao e

(c) distribuicao da poténcia éptica.
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A heterojuncao apresenta trés vantagens importantes relativamente a homojuncao. Em primeiro lugar,
ela mantém os portadores de carga numa regido limitada onde a sua recombinagio se torna mais provavel. Em
segundo lugar, a regido central activa apresenta um indice de refraccio superior ao das camadas adjacentes
(Fig. 6.9b), ajudando assim a confinar o campo 6ptico e aumentando a eficiéncia da emissio estimulada. Por
fim, a absorcao da luz nas regides adjacentes a regido activa é pouco significativa, de modo que as perdas sao
minimizadas. Estes trés efeitos fazem com que a corrente limiar para o funcionamento do laser de heterojuncao
seja bastante inferior ao do laser de homojuncdo, permitindo o seu funcionamento no regime continuo a
temperatura ambiente.

As caracteristicas de um laser de dupla heterojuncao sao significativamente alteradas quando a espessura
da camada activa se torna comparavel ao comprimento de onda de Broglie associado ao electrdo ou a lacuna. Na
dupla heterojuncao os electrdes e as lacunas estao confinados a regido central, onde a separagdo entre bandas £,
é inferior a das regides adjacentes. Ou seja, os electrdes e as lacunas estdo confinados a um poco de potencial,
estando os seus niveis de energia dependentes das dimensoes desse pogo. Os lasers semicondutores baseados
nestas estruturas sdo chamados lasers de pocos quanticos e caracterizam-se por uma corrente limiar bastante

baixa e um ganho elevado.

0.6.4. Materiais para os lasers semicondutores

A energia dos fotdes emitidos por um laser semicondutor é préxima da energia correspondente a banda
proibida, Eg. Num laser de GaAs, tem-se Eg = 1.42 eV e o comprimento de onda da luz emitida é cerca de
904 nm. A adi¢ao de Al a camada activa permite aumentar a banda proibida e diminuir consequentemente o
comprimento de onda da luz emitida. Deste modo, é possivel construir lasers baseados nas ligas AlGaAs/GaAs
emitindo luz na banda de 780-880 nm. Estes lasers sao bastante utilizados em variadas aplicacdes do dia-a-dia,
nomeadamente em leitores de CDs, impressoras laser e sistemas de comunicacao funcionando na regido dos
850 nm.

A maijor parte dos lasers semicondutores, actualmente existentes, sdo constituidos a partir de uma
combinac@o de elementos do terceiro e do quinto grupos da Tabela Peri6dica, sendo, por isso, designados por
lasers III-V. E o caso dos lasers baseados nas ligas ternarias AlGaAs e InGaAs ou na liga quaternaria InGaAsP.
Os lasers baseados nesta tltima liga sdo particularmente titeis no dominio das comunicaces por fibras épticas,
dado que podem emitir luz com comprimentos de onda nas regides de 1300 nm e 1550 nm, nas quais a atenuagao
dessas fibras é minima.

O composto In, GaxAsy P, é formado a partir do composto III-V binario InP, substituindo uma

-y
fraccao x de atomos de In por Ga, que é outro elemento do grupo III, e uma frac¢ao y de P por As, que é outro
elemento do grupo V. Podem-se escolher as fracgdes x e y de tal modo que a banda proibida corresponda ao
comprimento de onda pretendido. Consegue-se um acordo das redes de In|__ GaxAsy P

x = 0.45y.

Iy € de InP quando

Os lasers baseados na combinacao de elementos do segundo e sexto grupos da Tabela Periddica, designados
por lasers II-VI, proporcionam luz na regiao do azul-verde. A emissdo continua de luz azul, a 410 nm, é possivel,

por exemplo, com um laser de InGaN.
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6.6.5. Lasers semicondutores com um modo longitudinal

O facto de os lasers semicondutores apresentarem um espectro de emissao largo é indesejavel na perspectiva
dos sistemas de comunicacao por fibra 6ptica, dado que determina uma grande dispersao dos impulsos. Para
reduzir ao minimo esta dispersao, o laser devera oscilar num tnico modo longitudinal.

Um método eficaz para obter o funcionamento num unico modo longitudinal consiste na introducao de
componentes ou mecanismos na cavidade laser que provocam perdas para todos os modos longitudinais excepto
para um deles. Deste modo, apenas um modo longitudinal - aquele para o qual o ganho excede as perdas - podera
satisfazer a condigdo de oscilacao. Uma das técnicas que permite realizar este objectivo inclui o uso de cavidades
externas, tendo-se entao os chamados lasers de cavidade externa (LCE), como se representa na Fig. 6.10(a).
Outra técnica para conseguir o funcionamento em modo tnico consiste no uso de redes de Bragg em uma ou em
ambas as extremidades da regido activa, como acontece nos lasers do tipo DBR (de “distributed Bragg reflector”),
ilustrados na Fig. 6.10(b). Alternativamente, essas redes de Bragg podem ser aplicadas ao longo da propria regiao
activa, obtendo-se ento os lasers do tipo DFB (de “distributed feedback”) ilustrados na Fig. 6.10(c).

A reflexdo proporcionada pelas redes de Bragg depende do comprimento de onda; as componentes

reflectidas em cada passo da rede estdo em fase se o periodo dessa rede, A , satisfaz a condicao de Bragg

2n,, A = m) (6.45)

onde n,, ¢ o indice de refrac¢do efectivo e 71 ¢ um niimero inteiro. Uma escolha adequada do periodo A permite
seleccionar um tnico modo de oscilacdo do laser. Assumindo n,~3.5eparaum comprimento de onda de 1550 nm, o
periodo espacial da rede devera ser 221 nm. Redes com periodos desta ordem de grandeza sdo geralmente fabricadas
usando técnicas holograficas.

No caso dos lasers DFB, a rede de Bragg é formada numa camada situada por cima da camada activa. Deste
modo, a realimentacdo optica é distribuida ao longo de todo o comprimento da cavidade, sendo as faces do laser

geralmente revestidas com um filme anti-reflector.

Tipop
i

Regido activa

(a) LCE

Tipo n

Reflector externo

Regido uclivu\ _Rede de Bragg

(b) DBR

Regido activa Rede de Bragg
b

e e P o)

(c) DFB

Figura 6.10 — Estruturas de lasers semicondutores susceptiveis de funcionar num unico modo longitudinal: (a) laser de

cavidade externa (L.CE) ; (b) laser do tipo DBR; (c) laser do tipo DFB.
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6.7. Qutros lasers

Para além dos lasers semicondutores discutidos na seccio anterior, existe actualmente uma grande
variedade de lasers. Descreve-se a seguir, de modo sumario, dois outros tipos de lasers: o laser de rubi — o primeiro

a ser desenvolvido - e o laser de Hélio-Néon.

6.7.1. O primeiro laser - laser de rubi

Como se referiu no inicio deste capitulo, o primeiro laser construido foi um laser cujo meio activo era
constituido por um pequeno cristal sintético de rubi rosa, ou seja, um cristal de Al, O, com cerca de 0.05% de
Cr,O,. O cristal apresentava faces paralelas entre si, perpendiculares ao eixo e parcialmente espelhadas (formando
uma cavidade ressonante), encontrando-se instalado no eixo de uma lampada de descarga gasosa helicoidal (fonte
de bombeamento).

O laser de rubi constitui um exemplo de um laser com trés niveis. Quando se procede a descarga nalampada

de bombeamento, verifica-se a excitaciao de muitos ides Cr**

para bandas de absorcao. Os ides excitados decaem
através de transicoes nao radiativas para um par de niveis intermédios metaestaveis, onde permanecem durante
varios milissegundos até decairem para o estado fundamental, emitindo uma radiacdo fluorescente vermelha
centrada em 694.3 nm. Os laser de rubi sdo hoje utilizados como fontes pulsadas de radiagéo coerente e de grande

intensidade, em interferometria, analise de plasmas, holografia, etc..

6.7.2. O laser de Hélio-Néon

Sete meses apos a descoberta do laser de rubi por Maiman, Ali Javan, W. R. Bennett e D. R. Herriott
mostraram a possibilidade de construir um laser com emissao continua usando como meio activo um gés a baixa
pressao, constituido por uma mistura de hélio e de néon. O laser de He-Ne é, actualmente, o laser mais popular,
funcionando quase sempre no visivel e fornecendo alguns miliwatts de poténcia continua.

Os atomos de hélio sao excitados através de uma descarga eléctrica. Quando um dos a&tomos metaestéaveis
de hélio, que apresenta uma vida média elevada, colide com um atomo de néon no estado fundamental, existe
uma probabilidade elevada de se verificar uma transferéncia de energia para este 4tomo, excitando-o para um dos
niveis 3s, enquanto o atomo de hélio regressa ao estado fundamental (Fig. 6.11). A inversao de populacio pode
ser conseguida relativamente as transicoes entre os niveis 3s e 3p (emissao a 3.39 pm), 3s e 2p (632.8 pm), 2s e 2p
(1.15 pm).

Em contraste com o laser de rubi, o laser de Hélio-Néon proporciona uma emissao continua de luz de
elevada coeréncia. A cavidade do laser inclui, com frequéncia, espelhos externos e janelas de Brewster para
eliminar perdas por reflexdo. Noutras configuragdes, os espelhos encontram-se no interior ou constituem parte

do préprio tubo de descarga.
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Figura 6.11 — Niveis de energia do laser de Hélio-Néon.

6.8. A luz laser

O processo de emissao estimulada, que é a base do funcionamento do laser, d4 origem a uma multiplicidade
de fotdes com caracteristicas idénticas, no que respeita a sua amplitude, fase e direccdo de propagacgio. A luz
laser resulta assim extraordinariamente coerente, quer em termos temporais, quer em termos espaciais, o que
contrasta claramente com as caracteristicas cadticas da luz emitida por emissao espontanea. A coeréncia da luz
laser possibilita a sua focagem numa area com dimensoes da ordem do comprimento de onda. A intensidade
atingida nessa area pode ser de tal modo elevada que permite perfurar ou cortar materiais bastante duros. Os
valores mais elevados do fluxo de poténcia sao obtidos com lasers funcionando por impulsos ultra-curtos, cuja

duragdo pode ser de apenas alguns fento-segundos.

6.8.1. O feixe laser

O feixe correspondente a0 modo fundamental da cavidade laser (o chamado modo TEMOO) caracteriza-se

por apresentar uma intensidade cuja varia¢ao radial é descrita por uma fun¢ao Gaussiana do tipo

2
I(r) =1, exp[ 2 J (6.46)

2
w

Na Eq. (6.46), r é a variavel radial, /, é o valor miximo da intensidade obtido para =0, e w é uma
medida do raio do feixe, correspondendo a distancia radial para a qual a amplitude do campo é reduzida de 1/e
relativamente ao seu valor maximo. Este parametro assume um valor minimo, W, dentro da cavidade do laser,
onde se situa a chamada cintura do feixe. O raio do feixe aumenta com a distancia z relativamente a essa cintura
(Fig. 6.12), sendo dada por:
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Figura 6.12 — Representacio esquematica da propagacgio de um feixe Gaussiano ao longo do eixo dos z.

2 1/2

w(z)=w,| 1+ ﬁz (6.47)
)

Na sua cintura, o feixe Gaussiano tem uma frente de onda plana. A uma distancia z dessa cintura, o raio de

curvatura da frente de onda é:

2
2
R(z)=z| 1+ % (6.48)
z

Se as frentes de onda esféricas fossem concéntricas em torno de z = 0 deveria ter-se R(z) = z, 0 que nio

acontece na realidade. De facto, tem-se:
R(z)~z (6.49)

apenas quando

2
z»% (6.50)
A

situacdo que corresponde ao chamado campo longinquo. Nesta regido, a largura do feixe aumenta de um modo

praticamente linear com a distancia a cintura, sendo dada por:

w(z) ~ ﬁ (6.51)
Wy

6.8.2. Direccionalidade

A direccionalidade da luz laser sera talvez a propriedade que mais facilmente prende a nossa atengéo.
Uma maneira simples de entender essa direccionalidade consiste em considerar os espelhos da cavidade laser
como equivalentes a aberturas de colimacao. De facto, esses espelhos apresentam, geralmente, uma reflectividade
tao elevada que a luz gerada na cavidade laser é reflectida neles bastantes vezes, antes de ser transmitida para o

exterior. As reflexdes multiplas aumentam a distancia percorrida pela luz, a qual se mantém contudo confinada a
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uma pequena regido entre os espelhos. Devido a longa distancia assim percorrida, a curvatura da frente de onda
é bastante reduzida, pelo que a luz emitida resulta aproximadamente colimada.

O grau de direccionalidade de uma qualquer fonte de luz depende da monocromaticidade e da coeréncia
da luz emitida. As fontes ordinarias ndo sio nem monocromaticas nem coerentes. Por outro lado, um laser
distingue-se precisamente por essas duas caracteristicas, pelo que a luz por eles emitida apresenta também um
elevado grau de direccionalidade.

De acordo com a Eq. (6.51), a largura do feixe laser aumenta linearmente com z quando a condi¢ao (6.50)
é satisfeita. Dado que o semi-angulo, @, do cone de divergéncia do feixe é relativamente pequeno, pode fazer-se
tg ¢ = ¢, tendo-se entdo (Fig. 6.12)

g2 _ A 0644 (6.52)

z W, D,
onde D, =2w, € o didmetro do feixe na cintura. E de notar que a divergéncia do feixe é tanto maior quanto menor
for o diametro na cintura. A divergéncia tipica do feixe emitido por um laser de He-Ne é da ordem de um mili-
-radiano, significando este valor que a dimensao do feixe aumenta de cerca de 1 mm por cada metro por ele percorrido.

O resultado dado pela Eq. (6.52) é semelhante ao obtido no capitulo 4 para o raio angular do disco de Airy
correspondente ao padrao de difraccdo de Fraunhofer por uma abertura circular:

=124 (6:53)

D
sendo D o diametro da abertura. Tanto a Eq. (6.52) como a Eq. (6.53) dependem da razdo entre o comprimento de
onda e o didmetro, diferindo apenas no factor constante. De facto, verifica-se que a divergéncia do feixe gaussiano
é aproximadamente metade da divergéncia de uma onda plana difractada por uma abertura circular com um
didmetro igual ao desse feixe na cintura.

Asemelhanca entre as Eq.s (6.52) e (6.53) sugere que se possa interpretar a divergéncia do feixe laser, traduzida
pela Eq. (6.52), em termos de difrac¢io. Nesta perspectiva, a cintura do feixe corresponde a uma abertura circular
efectiva, que se situa dentro da cavidade laser e cujo didmetro podera ser ajustado de modo a controlar a divergéncia
do feixe. Note-se, contudo, que no caso da difraccao de Fraunhofer por uma abertura circular esta abertura é real
e que a luz nela incidente é constituida por ondas planas com intensidade uniforme. No caso de um feixe laser, a
cintura nio é de facto uma abertura e as frentes de onda nessa posicao, embora sendo planas, apresentam uma
intensidade que varia com a distancia ao eixo de acordo com a funcdo Gaussiana dada pela Eq. (6.46).

O diametro do feixe laser na cintura relaciona-se com o comprimento da cavidade ressonante, L, e com o

comprimento de onda, A, na forma

1/2
D, = (MLJ (6.54)
T

6.8.3. Focagem e expansao do feixe laser

E habitual na éptica geométrica representar a focagem de um feixe colimado num simples ponto através do
uso de uma lente convergente. Esse ponto imagem, contudo, ndo passa de umaidealizacio, devido, nomeadamente,

as aberracoes que afectam essa lente. O ideal de concentrar a luz numa mancha com um diametro extremamente
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reduzido - aproximadamente igual ao comprimento de onda dessa luz - pode, no entanto, ser conseguido usando

uma lente convergente para focar um feixe laser (Fig. 6.13).

Plano focal

Figura 6.13 — Focagem de um feixe laser através de uma lente convergente.

Se o didmetro d da lente for igual ao diametro do feixe laser a uma distancia z da sua cintura, tem-se da Eq.
(6.51) que

=22z (6.55)
W

Por acgdo da lente, o feixe é focado e o seu didmetro atinge um valor minimo no plano focal, dado por

2w, = HA_24 (6.56)
b

T

onde F' = f/d é o chamado nuimero-F . No caso de se ter F' = 1, verifica-se que o didametro do feixe no plano focal
é, aproximadamente, igual ao comprimento de onda da luz.

Como consequéncia da focagem do feixe laser, a intensidade no plano focal da lente adquire geralmente
valores muito elevados. Este facto permite realizar perfuracdes ou cortes muito finos em materiais bastante duros
e, em geral, realizar operacoes industriais ou médicas em alvos com dimensdes semelhantes a0 comprimento de
onda da luz. Na area da oftalmologia, por exemplo, sdo usados habitualmente lasers de Nd:YAG em cirurgias
oculares, tendo-se entdo intensidade na ordem de 10° a 10> W/cm?.

O feixe laser pode ser expandido usando duas lentes convergentes, espacadas de uma distancia igual a soma
das respectivas distancias focais (Fig. 6.14). A primeira lente, com uma distancia focal f,, foca o feixe colimado
inicial, enquanto a segunda lente, com uma distancia focal f, > f, , volta a colimar o feixe j& expandido. Neste

processo, o diametro do feixe na cintura é aumentado de um factor igual a razao entre essas distancias focais

D, _fy (6.57)
Dy fi

Simultaneamente com a expansdo do feixe, obtém-se igualmente uma diminuicdo do seu angulo de

divergéncia, dada pela razao i .

e

Feixe incidente

1 Feixe expandido

fi fa

Figura 6.14 - Expanso de um feixe laser usando duas lentes convergentes.
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6.8.4. Monocromaticidade

Do ponto de vista do investigador laboratorial, a propriedade mais importante da luz laser sera talvez a
sua extraordinaria monocromaticidade. Todavia, mesmo a luz de um laser nao é absolutamente monocromatica,
constituindo apenas uma boa aproximacao a esse ideal.

O grau de monocromaticidade da luz emitida por uma dada fonte pode ser traduzido pela largura em
comprimentos de onda, A4, dalinha de emissdo. Dependendo da fonte e do seu nivel de excitacio, a luz emitida
pode corresponder a um espectro mais ou menos estreito. No caso da luz branca tem-se A4 =300 nm, enquanto
que para uma lampada de descarga ordinéria se tem A4 =0.lnm e para uma ldimpada de cidmio de baixa
pressio (A = 643.8 nm) se tem AA =0.001 nm.

No caso de um laser, o processo de emissao estimulada restringe consideravelmente a banda de comprimentos de
onda emitidos durante a emissdo espontinea. Deste modo, a largura espectral A4 ¢é bastante reduzida, conduzindo a
um elevado grau de monocromaticidade da luz emitida. Um laser de He-Ne monomodo (A = 632.8 nm) apresenta uma
largura A4 = 10 nm. Ou seja, um laser de He-Ne monomodo é 10 milhdes de vezes mais monocromatico do que uma

lampada de descarga ordinaria e cem mil vezes mais monocromatica do que uma lampada de caidmio de baixa pressao.

6.8.5. Brilho

Outra caracteristica importante da luz laser € o seu brilho, ou luminancia. De facto, a luz laser caracteriza-
-se por uma poténcia radiante muito elevada, que flui no interior de um pequeno angulo sélido sob a forma de
um feixe com didmetro reduzido. Uma lampada de incandescéncia, por exemplo, gera consideravelmente mais
energia radiante que um laser continuo de baixa poténcia, mas a sua emissao € incoerente, o feixe dispersa-se no
interior de um angulo sélido elevado e a largura de banda é significativa.

No caso de um laser de He-Ne (4 = 632.8 nm), 1 miliwatt de poténcia corresponde a um fluxo luminoso
de 0.16 Im. Considerando um feixe com 1 mm de diametro e uma divergéncia de 1 mrad, a que corresponde um

angulo s6lido de cerca de 10 °srad, temos que o brilho (luminancia) da luz desse laser é:
L, =2 x 10" Im/sr.cm? (6.58)

Atendendo a que a largura espectral da luz emitida por um laser de He-Ne multimodo é aproximadamente
0.2 nm, a lumindncia espectral respectiva sera L (4) = 10% Im/sr.cm? nm.

Por outro lado, a luminancia do sol é de apenas 1.5 x 10° Im/sr.cm?. Considerando que o espectro visivel da
luz solar tem uma largura de cerca de 300 nm, a luminancia espectral do sol é L (4) = 5 x 10? Im/sr.cm”nm. Deste
modo, conclui-se que um laser de He-Ne multimodo de apenas 1 mW de poténcia tem uma luminancia espectral

cinco a seis ordens de grandeza superior a luminancia espectral do sol.

6.8.6. Coeréncia

A propriedade da coeréncia da luz pode ser entendida com base no conceito de correlagio. Se a luz de uma
dada fonte for completamente coerente, quer em termos espaciais quer em termos temporais, existira entdo uma

correlacdo perfeita entre as variacdoes do campo eléctrico em dois pontos arbitrarios do espaco. Tendo-se medido
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uma vez as variagdes do campo eléctrico nesses dois pontos, sera possivel, num momento posterior, predizer, com
absoluta certeza, o comportamento do campo num deles, medindo simplesmente o campo eléctrico no outro ponto.
Apenas a luz monocromatica pode ser completamente coerente no espaco e no tempo. Como consequéncia,
é facil de entender por que razao o grau mais elevado de coeréncia entre todos os tipos de fontes se verifica nos
lasers. E essa propriedade que permite a sua utilizacio em &reas como a holografia e a interferometria.
A coeréncia temporal de uma fonte esta directamente relacionada com a largura do seu espectro de emissao,
Av . Essa coeréncia temporal é caracterizada pelo chamado tempo de coeréncia t,, durante o qual as componentes

do espectro mantém uma relacao de fase fixa entre si, e que é dado por:

1

= (6.59)
Av

T
O comprimento de coeréncia [, é a distancia percorrida durante o tempo de coeréncia, sendo dado por:

l=cr,=—— (6.60)
Av

O comprimento de coeréncia de um laser de He-Ne vulgar, funcionando simultaneamente em varios
modos, é de cerca de 50 cm. Contudo, no caso de um laser de He-Ne funcionando num modo dnico, a sua largura
espectral é tipicamente de 1kHz, a que corresponde um comprimento de coeréncia de 300 km.

O comprimento de coeréncia pode ser medido usando um interferémetro de Michelson. No caso de lasers com
largura espectral da ordem de 1 GHz, pode usar-se a configuracao aberta deste interferémetro, descrita no capitulo
3, dado que as diferencas de percursos épticos nos seus dois bracos sdo, nesse caso, inferiores a 30 cm. Contudo,
para lasers com largura espectral inferior a 1 MHz a diferenca de percursos épticos resulta superior a 300 m. Nestas

circunstancias, torna-se mais pratico usar uma fibra dptica num dos bragos do interferémetro de Michelson.

6.8.7. Granitado laser

Uma consequéncia imediata da coeréncia espacial da luz laser é o aparecimento do granitado laser
(speckle), que ocorre quando o feixe laser é reflectido por superficies difusoras. A luz difundida preenche a regiao
circundante da superficie com um padrao de interferéncia estacionario, que apresenta uma estrutura granitada,
constituida por graos brilhantes e escuros. Verifica-se que as dimensoes destes graos se tornam mais reduzidas
quando o observador se aproxima da superficie difusora.

Em qualquer ponto do espaco, o campo difundido resulta da sobreposi¢do de um grande nimero de ondas
difundidas. As diferencas de fase entre estas ondas sdo determinadas pelos percursos 6pticos entre cada ponto
da superficie difusora e o ponto de observacdo. Pequenos movimentos da vista alteram essas diferencas de fase e
produzem um efeito de cintilagdo da estrutura granitada.

O granitadolaser pode ser registado numa placa fotografica. Um dado ponto desta placa recebe contribui¢oes
provenientes de toda a superficie iluminada. As fases relativas dessas multiplas contribui¢des variam de modo
significativo num ponto adjacente da placa para o qual a diferenca de percursos, relativamente as extremidades
da zona iluminada, varia de um comprimento de onda, A .

A descri¢ao anterior permite concluir que as dimensdes do granitado laser podem ser obtidas tendo por
base a experiéncia de Young descrita no Capitulo 3. Assim, suponhamos que a area iluminada tem um diametro
h e que a distancia entre esta area e o plano de observacédo é D (Fig. 6.15). Considerando os dois pontos extremos

da area iluminada, o espacamento, d, entre as franjas no plano de observagao é dado por:
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d= /19 (6.61a)
h
Deste modo, para uma dada configuracao ( A = const., L = const.), tem-se d oc 1/ /4 ; ou seja, o espacamento
entre as franjas aumenta quando a distancia entre os dois pontos diminui. O espagamento dado pela Eq. (6.61a)
corresponde assim a menor dimensao possivel para a estrutura do granitado laser. Atendendo a que a luz é
difundida por toda a area iluminada e nao apenas pelos dois pontos extremos considerados, a Eq. (6.61a) é apenas
uma aproximacao, tendo-se entao
D
1=

d=~ (6.61b)

Superficie difusora

L D N

Figura 6.15 - Representacio esquematica para a analise da dimensao do granitado laser objectivo.

O granitado laser, considerado anteriormente, é chamado granitado objectivo, dado que as suas caracte-
risticas ndo estao dependentes de qualquer sistema de formacdo de imagem. Por contraste, chama-se granitado
subjectivo aquele que € obtido através de um sistema de formacao de imagem, como é o caso do olho humano.

Quando se olha para uma superficie iluminada por luz laser, a cada ponto dessa superficie corresponde a
sua imagem na retina. Contudo, a pupila do olho funciona como uma abertura circular, que difracta a luz nela
incidente, pelo que essaimagem nao é pontual. Em consequéncia, aum dado ponto da retina chegam contribui¢oes
de diferentes pontos da superficie iluminada, sendo a fase de cada uma dessas contribuicoes aleatéria. Forma-se
assim um padréo de interferéncia com o aspecto de granitado.

A dimensio do granitado observado pela vista, d, , ¢ dada aproximadamente por:

d, ~22 (6.62)
s

onde A é o comprimento de onda da luz, D é a distancia da vista a superficie difusora e s é o diimetro da pupila.
Esta relacdo pode ser facilmente comprovada pala experiéncia. De facto, quando se fecha ligeiramente os olhos o
granitado torna-se maior, o mesmo se verificando quando a distancia entre a superficie e o observador aumenta.

O granitado nao desaparece quando a vista é desfocada ou quando se retiram os 6culos. Quando a cabeca se
move, os caminhos 6pticos desde os pontos na superficie iluminada até a retina sao alterados, pelo que se observa,
em geral, um movimento correspondente do padrao de granitado. No caso de um observador hipermétrope,
esse padrao move-se no mesmo sentido do movimento da cabeca. Contudo, para um observador miope, esse
movimento verifica-se em sentido oposto. Um observador com visao perfeita nao observara qualquer movimento.

O efeito do granitado laser é geralmente indesejavel. No caso de imagens fotograficas, por exemplo, ele
constitui um ruido de fundo inconveniente. Contudo, para além do seu interesse pedagogico, o granitado laser

pode ser aproveitado com utilidade no campo da interferometria.
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6.9. Problemas resolvidos

PR 6.1. Considere que o coeficiente de Einstein para a emissdo espontanea numa transi¢ao correspondente a um
comprimento de onda A= 600 nm é 4, = 10°/s.

a) Qual é o correspondente coeficiente de Einstein para a emissao estimulada?

b) Qual devera ser a intensidade dentro da cavidade para que a taxa de emissao estimulada seja trés vezes

superior a taxa de emissao espontanea?

Resolucao
a) O coeficiente de Einstein para a emissdo estimulada obtém-se a partir do coeficiente de Einstein para a

emissao espontanea usando a Eq. (6.19), que pode ser reescria na forma:
B,=—A4 ¢
Substituindo os valores para os parametros, tem-se
B, =13x10%]"'m’s2. 2

b) Usando as Eq.s (6.2), (6.4) e (6.15), tem-se que taxa de emissdo estimulada seré trés vezes superior a taxa

de emissao espontanea se
B, —=34 3)

Substituindo os valores de B, , 4, e ¢, obtém-se

10

1=6.9x10°Wm=2Hz". (4)

PR 6.2. Considere um sistema atdmico em que o estado fundamental tem energia £ e o primeiro estado excitado

tem energia £ . A diferenca entre essas energias corresponde a um fotao com comprimento de onda A = 600 nm.

a) Determine a razao N1 entre as populagoes dos dois niveis para uma temperatura 7' = 300 K.

Ny

b) Para que temperatura se tem M ? Que conclusdo pode tirar?

1
N, 2

Resolucio

a) Tem-se
c
E —Ey=hv=h—
A
6.626 x 103*x 3% 108

= - ~331x101J ®
600 x 10~
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Para uma temperatura T = 300 K,

k,T7=138x107x300=4.14x 102" J

(2)
Deste modo, tem-se
ﬂzexp —El — £y =~10% (3)
N, kgT

Pode-se concluir deste resultado que serd bastante improvavel encontrar, a temperatura de 300 K, um

4tomo no estado excitado.

b) Fazendo ﬂ — l na Eq. (6.6) e calculando o logaritmo de ambos os membros, tem-se
Ny

_E-E,  331x10"

= = =34600K (4)
kg(n2) (1.38x 102)(In2)

Este valor é muito superior a temperatura na superficie do sol. Torna-se claro que, para se conseguir a
inversdo da populacdo destes dois niveis, o aumento da temperatura nao € a solucdo, devendo-se usar alguma

forma de bombeamento de energia.

PR 6.8. Mostre que a evolugdo da intensidade de um feixe constituido por radia¢do perfeitamente monocromatica
num meio activo é dada por pelas Eq.s (6.16) e (6.17).

Resolucao
O numero de fotoes, Py ganhos em cada segundo pelo feixe ao passar pelo meio activo pode-se escrever a

custa da intensidade nas posi¢des z e z+4z, na forma:

D;; A
7 = (Z+AZ)—1(Z)]T
_diz) A
T dz Az hv W

i

onde A é a area da secciio do feixe e se assumiu na ultima igualdade que 4z era suficientemente pequeno. Por outro lado,

ataxa de variacao do numero de fotdes pode ser escrita em termos das taxas de emissao e de absor¢ao estimuladas:

dp..

7oy 13 5 —Ni@ B,
dt J c ij c ij

(2
1
=B (N; —Nl-)@
ij J c

onde na tltima igualdade se usou a Eq. (6.11) e N, e Nj sa0 o namero de atomos nos estados de energia inferior e

superior, respectivamente, no elemento de volume considerado.
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A partir das Eq.s (1) e (2) pode-se escrever:

d@) gy IO )
dz LA c AzA
hv,
=B, (n; —n,) c‘ I(z)

onde n; =N,;/AAz e n; =N/ AAz representam o nimero de dtomos por unidade de volume, ou densidade de

populacio, dos dois estados de energia.

Integrando a Eq. (3), obtém-se

I(z) = I(0)exp(fz) (4)
onde
hv,
B=B,(n, —n)—" ®)
c

é o coeficiente de ganho. Este coeficiente sera positivo se n ;> 1;, ou seja, se se verificar a inversao da populacdo.

Usando a Eq. (6.10), pode-se escrever a Eq. (5) na forma

4

=(n,—n, i (6)
B=ny=n)—r

i

PR 6.4. Um laser de Hélio-Néon emitindo a 632.8 nm tem uma cavidade ressonante formada por dois espelho
planos espacados de 0.5 m. Determine o numero de modos longitudinais que contribuem para a emissao do laser,

sabendo que a largura espectral da linha de emissao espontanea do Ne a 632.8 nm € de 0.0016 nm.

Resolucio
De acordo com a Eq. (6.26), a separacdo em frequéncia entre modos longitudinais sucessivos do laser é
c
Av=—
2d
_3x10*
2(0.5)

¢

=3x10% Hz

Por outro lado, a largura espectral no dominio das frequéncias da linha do Ne a 632.8 nm é

Av‘=cj—;1

-8
=3x10% &:12 x 107% Hz (2)
(632.8x10° )?
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Deste modo, tem-se:

1

N° modos =

=4
» 3)

pelo que o laser funcionara com quatro modos longitudinais.

A B
PR 6.5. Obtenha a matriz { } para o sistema unitrio correspondente a uma volta na cavidade ressonante repre-

sentada na figura 6.5.

Resolugao

A matriz do sistema unitario correspondente a uma volta na cavidade ressonante representada na figura
6.5 é dada pelo produto de quatro matrizes: uma matriz de transferéncia (distancia d) entre o espelho 1 e o
espelho 2, uma matriz de reflexdo no espelho 2 (raio R, ), uma matriz de transferéncia (distancia d) entre o espelho

2 e o espelho 1 e uma matriz de reflexdo no espelho 1 (raio R ). Deste modo, tem-se

¢ oFloin T T T ]

Multiplicando as matrizes no membro direito da Eq. (1), obtém-se os seguintes resultados para os elementos

da matriz do sistema:

A=1+ ﬁ (2a)
2
2
B=2d+29" (2b)
2
C= £+i+ﬂ (20)
Rl R2 R1R2
2
Rl R2 RIRZ

PR 6.6. Mostre que a condicao de estabilidade para a cavidade ressonante da Fig. 6.5 é dada pela Eq. (6.27).
Resolugao

Se x, e y representarem a altura e a inclinagdo do raio, respectivamente, ap6s p voltas na cavidade, os

respectivos valores ap6s p+1 voltas sao dados pela seguinte relacao matricial:
Y| (A4 B W
Y p+l ¢ D Y Y4
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onde {A B:| ¢ a matriz unitaria obtida no problema PR 6.5. Pode-se verificar que
Cc D

A
C

B
=AD-BC=1 @)
D

Nestas circunstancias, como se viu no Capitulo 2, a solucao da Eq. (1) é dada, na forma:

X = X sen(pp -+, ) 3)
onde

p=cos'q, (4)

= A ; D (5)

Usando as Eqgs (2a) e (2d) do problema PR 6.5, tem-se que

qz2(1+§}(1+§}—1 (6)

A solugdo dada pela Eq. (3) é véalida se ¢ for real, o que acontece se
-1<g<1. (7

Introduzindo os parametros

d
&=Hgfe g =1+— (8)

1 2
a Eq. (7) pode ser apresentada na forma:
0<gg<l C))

que corresponde a condi¢do de estabilidade da cavidade ressonante.

PR 6.7, Obtenha uma expressdo para o espacamento em frequéncia, Av , entre os modos longitudinais adjacentes
de um laser semicondutor, tendo em consideragio a dependéncia do seu indice de refracc¢do, n, com a frequéncia,
v. Calcule esse espagamento para o caso de um laser semicondutor de comprimento / = 300 pm e indice de

~ . N A g 14
refracgdo 7 = 3.6, cuja variacdo com a frequéncia ¢ tal que —5—” ~04.
ndv
Resolucio
As frequéncias correspondentes aos modos longitudinais de oscilagdo de um laser semicondutor sdo dadas
pela condicdo de ressonancia da cavidade, indicada na Eq. (6.25):

V= C
2 ¥

p=123,.. ¢))

onde / é o comprimento da cavidade e n(v) é o indice de refracciao do material semicondutor.
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O espacamento Av entre frequéncias de oscilagido adjacentes pode ser obtido da Eq. (1) na forma:

Av=v, . -v =(p+])— " —p—° (2)
p Y =T v A P anm)l
Pode-se usar uma expanséao do indice de refraccao na forma:
_ dn
n(v+Av)=n(v)+—Av (3)
dv
obtendo-se entio o resultado
c vdn )
Av=—{|1+-2L ()
2nl ndv
. vdn
Se se considerar os valores = 3.6, [ =300 pm e fd— ~ 0.4, tem-se
ndv
Av =100 GHz (5)

PR 6.8. Considere um laser de Hélio-Néon emitindo luz com comprimento de onda A = 632.8 nm. Considerando
que o nivel 2p do 4tomo de néon tem uma energia de 15.2 x 10 J, determine a energia de bombeamento que

sera necessario usar.

Resolugao
A energia de bombeamento deve ser pelo menos igual a diferenca de energias entre o nivel fundamental e

o estado metaestavel 3s, AE; . Esta diferenca de energias é dada por:

AEs o =AE,,+AE;,, ®

onde AE,, , éaenergia do nivel 2p relativamente ao nivel fundamental e AE; ,, ¢ a diferenca entre as energias

dos niveis 3s e 2p, dada por:

AE =E3,—E2p:hv:h—c ©)

3s.2p K
Substituindo os valores dados, tem-se:

Ap - (66x10°9(3x 109
2p 6.32.8x 107

=3.12x 107 J (3)
Portanto, a energia de bombeamento que sera necessario usar é:

AE; o =AE,,  +AE;,,,

=152x10"Y+3.12x 10 =18.32x 10" J (4)

PR 6.9.Calcule o ganho limiar, S, , e o tempo de vida dos fotdes, 7 4> um laser semicondutor com comprimento

/=300 um, indice de refraccdo n = 3.5, faces com reflectancias R, = R, = 0.30 e atenuagio o,=10cm™.
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Resolucao
Na situac@o limiar, o coeficiente de ganho ¢ igual a soma das perdas por absor¢ao no material com as

\ .~ . . 2 .
perdas correspondentes a emissao de luz para o exterior. Considerando que R; =r;,j = 1, 2 e usando as Eq.s

(6.21) e (6.22) e tem-se:

1 1
=g +—In =50 -1 1
ﬂllm P 2/ (Rl ZJ cm ( )

O tempo de vida dos fotdes corresponde ao tempo médio que um fotdo demora dentro da cavidade do laser

antes de ser absorvido ou de ser emitido para o exterior. Usando a Eq. (6.44), tem-se:

T, = A 35 =23 ps (2)
Pim (3 x10%)(5 x 10%)

PR6.10.
a) Represente esquematicamente as transicbes dominantes para o caso de um sistema de quatro niveis,

analogo ao representado na Fig. 6.4. Considere as transi¢des devidas a emissao espontdnea apenas entre niveis vi-
zinhos e assuma uma taxa de bombeamento constante, R, do nivel fundamental para o nivel de energia mais elevado.
b) Escreva as equacoes de taxas para a populacao de cada nivel de energia;

¢) Assumindo a situagdo estacionaria, obtenha o resultado dado pela Eq. (6.29) para a diferenca de

populacdes entre os niveis N, e N, .

Resolugao
a) Afig. 6.16 ilustra as transi¢coes dominantes entre os quatro niveis de energia do sistema laser, considerando

a taxa de bombeamento, R, entre o nivel fundamental e o nivel 3, as taxas da emissdo espontanea entre niveis
adjacentes, definidas pela Eq. (6.2), assim como a taxa da absor¢ao estimulada do nivel 1 para o nivel 2, dada pela

Eq. (6.3), e a taxa da emissao estimulada do nivel e para o nivel 1, dada pela Eq. (6.4).

T
r Decaimento rapido N,4;
E, '
P N, o

Transigao laser

E)

—N] o I

i \[:ecaimento rapido NAy
¢ __EU No ; R

N

Figura 6.16 — Esquema representando os processos de transi¢do dominantes num sistema de quatro niveis.

Bombeamento

b) Considerando as transi¢oes indicadas na Fig. 6.16, as taxas de varia¢do das populacoes, em cada um dos

quatro niveis, sdo dadas pelas seguintes equagdes diferenciais:
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Cclz’]:[3=R_N3A32 »
fijtvz =Ny dy+ NiBy é_Nszu E—NzAzl (2)
%:NZBZI £+N2A2] ~N,B, é—NlAm )
dcj\rfo =Nid, ~R (4)

onded.,, 4,,, 4, e B, sdo os coeficientes de Einstein para as transi¢des entre os niveis 0, 1, 2 e 3.

¢) No estado estacionario, tem-se

dN, dN, dN, dN,
dt ~ dt ~ dt  dt =0. )

Da Eq. (1) tira-se que N, 4, = R. Substituindo este resultado, somando e subtraindo N, 4, na Eq. (2), tem-se

1 I
0=R+N,B,, ;—NZBZ] ;—NZAzl +N4, —N4, (6)
A Eq. (6) pode ser reescrita na forma
! )
R=(N,—-N))B,, ;+ (N, =NDA, + N4,
Colocando (N, N,) em evidéncia e substituindo N, = R/4,, no dltimo termo, obtém-se o resultado:

N,—N, = (8)

PR 6.11.Quando um laser semicondutor é modulado através da corrente injectada, o indice de refraccao da cavidade
. L . A -, An . L
varia. Supondo que a variacdo relativa do indice de refraccio é — = 10, calcule a variaciio correspondente

n
do comprimento de onda e da frequéncia. Considere que o laser emite luz com um comprimento de onda

A =1.55pum.

Resolucao
Da Eq. (6.25) tem-se:

2 2nl @
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A variacdo do comprimento de onda, A4, correspondente a variacdo An do indice de refracgio é entdo

Al:l&
n

=(1.55x 10°)(10°) = 1.55 x 10> nm (2)

A variacao correspondente da frequéncia é:

c

AV:?AA

g
= 30 (15510 2)=193.5 MHz )

(155 <10

PR 6.12. Obtenha o semi-angulo de divergéncia para
a) um feixe emitido por um laser de He-Ne (A = 632.8 nm) com uma cavidade de comprimento L = 30 cm;

b) um feixe laser com um comprimento de onda de 300 nm e uma cintura de diametro D0 =1cm.

Resolucio
a) Usando a Eq. (6.54), tem-se:

-9
Dy :( (2)(632.8 x 109)(0.3)

1/2
= 0.35 mm. ®
3.14

O semi-angulo de divergéncia, dado pela Eq. (6.52), é neste caso:

(0.64)(632.8 x 10°)
3.5%x10*

~1.2 mrad. (2

¢

Este valor corresponde a divergéncia tipica de um feixe laser.

b) Neste caso, tem-se:

~(0.64)(300 x 10°)

1% 102 ~ 1.92x107° rad (3)

Verifica-se que a divergéncia do feixe é, neste caso, reduzida 63 vezes relativamente a situacio da alinea a).

PR 6.13. Considere o feixe de um laser de He-Ne com uma poténcia de 1 mW focado por uma lente convergente

com F'= 1. Calcule o didmetro da mancha luminosa no plano focal da lente e a respectiva intensidade.

Resolucao
Usando a Eq. (6.56), tem-se que o diametro do feixe no plano focal da lente é dado por:

_ (4)(632.8x10°)

Tia (1)=806 nm. )

2w/-
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Assumindo-se uma distribui¢io uniforme da poténcia, tem-se que a intensidade no plano focal da lente é dada por

IZ%zZXIOO W/m?2. 2
Wy

PR 6.14. Um laser de He-Cd emite um feixe de luz com um raio de | mm e contendo os comprimentos de onda
325 nm e 488 nm. Supondo que a luz se propaga no espago livre, a que distancia do laser a diferenca entre os raios

das duas componentes do feixe é de 2 cm?

Resolucio
O raio do feixe a uma distacia z do laser é dado a partir da Eq. (6.52) por:

w(z) = Az ¢))
v,

A diferenca entre os raios das duas componentes do feixe é dada por

Wz_wlzi(lz_ﬂ‘l) 2)

0

A distancia para a qual a diferenca entre os dois raios é 2 cm é:

_ 3.14x10°
" (4.88-3.25)x 10

&(Wz _W1)

z= —2x102=385m (3)
(/12_/11) ’

6.10. Problemas propostos

PP 6.1. Considere a equacao p L= —A,,N, para o decaimento da populacio do nivel de energia £, devido a

emissdo espontanea. Mostre que uma populacio inicial N decresce para um valor N, / ¢ ao fim de um tempo

t=1/A4,,. Aconstante r é conhecida por tempo de vida da emissio espontanea.

PP 6.2. Explique por que razio sera mais dificil realizar um laser que emita luz com um comprimento de onda
na regido do ultravioleta do que na regido do infravermelho. Assente a sua explicacdo na razdo 4,, / B,, e no

significado dos coeficientes 4, e B .

PP 6.3. Considerando um sistema em equilibrio térmico e um comprimento de onda 4 = 10 pum, determine a

temperatura para a qual as taxas de emissido espontinea e de emissao estimulada sdo iguais.
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PP 6.4. Dados dois espelhos com raios de curvatura R, = —100 cm e R, = —200 cm, determine para que valores da

separagao entre eles a configuracdo é i) estavel, ii) instavel e iii) condicionalmente estavel.

PP 6.5. Assumindo que o comprimento de onda central de um laser de He-Ne é 1 = 632.8 nm, qual é a frequéncia
correspondente? Se a separacao entre os espelhos da cavidade for 50 cm, qual o valor do ntimero inteiro ¢
correspondente ao modo mais préximo do centro da linha? Se a largura da curva de ganho do laser de He-Ne for

1 GHz, qual o nimero de modos longitudinais para esta cavidade?
PP 6.6. Obtenha o resultado dado pela Eq. (6.33) para a intensidade dentro da cavidade laser acima do limiar.

PP6.7. As extremidades de um cristal de rubi (n = 1.76) sdo cortadas e polidas de modo a constituirem os espelhos
de um laser, que emite luz com um comprimento de onda 4 = 694.3 nm. Considerando que o cristal tem um
comprimento de 12 cm e um didmetro de 6 mm, discuta a importancia da difraccao no computo das perdas de

energia na cavidade desse laser.

PP 6.8. Uma corrente de 40 mA é injectada num LED de GaAsP emitindo luz com comprimento de onda A = 500 nm.

Supondo que a eficiéncia quantica interna do GaAsP é 0.1, determine a poténcia gerada pelo LED.

PP 6.9. Um laser de InGaAsP (n = 3.5), com comprimento / = 400 um, tem uma largura espectral de 1.2 THz.
Supondo desprezavel a variacdo do indice de refracgdo com a frequéncia, determine o espacamento entre os
modos longitudinais e o nimero desses modos em que o laser pode oscilar. Qual o comprimento méaximo do laser
que podera garantir o seu funcionamento num tnico modo?

PP 6.10. O composto quaternario In,_ Ga _As y P , apresenta um acordo de rede com o composto binario InP

1-
quando x = 0.45 y. A banda de energia proibida do composto InGaAsP é dada por:

E ()=135-072y +0.12)?eV

Determine a composicao da camada activa de um laser semicondutor de InGaAsP projectado para emitir

luz com um comprimento de onda 2 = 1550 nm.

PP6.11. O feixe emitido por um laser é gaussiano, ou seja, a amplitude do campo varia numa dada seccao transversal
com a coordenada radial » na forma E = 4 exp{— 2w’ }, onde A é uma constante e w € o raio do feixe.

a) Obtenha, em funcéo de w, o raio 7, do disco, no interior do qual a intensidade é superior a metade do

seu valor maximo.

b) Verifica-se que o feixe é difractado durante a sua propagacdo. Obtenha a distribui¢do da intensida-
de correspondente a difraccdo de Fraunhofer do feixe. Determine o angulo de difrac¢do 6, correspondente ao
disco no interior do qual a intensidade é superior a metade do seu valor maximo. Assuma os valores 4 = 632.8 nm

ew = 0.5 mm.

PP 6.12. O feixe emitido por laser de rubi (4 = 694.3 nm) é dirigido para um alvo situado a distancia de 5000 km.

Supondo que o feixe tem um didmetro de 1 cm a saida do laser, que valor tera esse diametro na posicao do alvo?
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PP 6.13. Compare o comprimento de coeréncia das seguintes fontes:

a) uma lampada de filamento emitindo luz branca numa banda de comprimentos de onda 400-700 nm;

b) um laser de He-Ne com uma cavidade de 40 cm oscilando com trés modos longitudinais;

¢) Um laser estabilizado de Nd-YAG funcionando num tnico modo longitudinal, com largura espectral
Av =30 kHz.

PP 6.14. Considere uma superficie plana elementar, com didmetro /, iluminada uniformemente pela luz emitida
por um laser de He-Ne (4 = 632.8 nm). O padrio formado pelo granitado laser num ecra situado a 1 m da superficie
difusora é observado a uma distancia de 25 cm desse ecra. Determine para que valor do diametro da superficie
difusora a estrutura mais fina do granitado laser deixa de poder ser observada. Considere que a resolu¢do minima

da vista € de 47 segundos de arco.
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Capitulo 7

HOLOGRAFIA

A holografia foi inventada pelo cientista britanico Dennis Gabor em 1948, quando procurava melhorar a
qualidade da imagem proporcionada pelo microscopio electrénico. Quanto a palavra holografia, ela tem a sua
raiz no termo grego holos, que significa totalidade. De facto, enquanto que na fotografia tradicional apenas a
intensidade da luz é registada, na holografia tanto a amplitude como a fase da onda proveniente do objecto
sdo registadas, apds a sua interferéncia com uma dada onda de referéncia. Para este efeito, torna-se necessario
usar luz coerente, de modo a existir uma relacio de fase fixa entre essas duas ondas. No sentido de reconstruir a
imagem tridimensional do objecto, Gabor sugeriu que bastaria iluminar o holograma com uma onda semelhante
a onda de referéncia usada durante o registo.

Na realidade, a ideia da holografia acabou por nao se mostrar ttil no ambito da microscopia electrénica,
tendo permanecido praticamente ignorada até a descoberta do laser, em 1960. O interesse das comunidades
cientifica e artistica por esta ideia aumentou significativamente com o desenvolvimento da técnica de registo fora

do eixo, proposta por Emmett Leith e Juris Upatnieks em 1962.

/.1. Fotografia versus Holografia

Uma fotografia convencional regista apenas a variacao de intensidade correspondente a um objecto ou
a uma cena. Dado tratar-se de um registo bidimensional, ela ndo proporciona nenhuma informacao acerca da
profundidade da cena. Quando se olha para uma fotografia parece, por vezes, que se tem uma percepcao dessa
profundidade. Contudo, isto acontece geralmente apenas porque a cena nos ¢ ja familiar.

Por contraste com a fotografia convencional, o holograma permite registar a cena com a sensacao de
profundidade e a paralaxe com que a podemos observar na realidade. Isto é possivel porque toda a informacao da
frente de onda, nomeadamente a sua amplitude e a sua fase, é registada. Quando um holograma é iluminado nas
condicdes adequadas, essa frente de onda é completamente reconstruida e o observador pode contemplar a cena
original através da “janela” definida pelo holograma.

As caracteristicas da imagem proporcionada por um holograma devem-se, sobretudo, a preservacao da
informacao relativa a fase da frente de onda, para além da sua amplitude. O registo dessa informacao é importante,
dado que as fases das ondas originadas em pontos distintos de um objecto sdo também diferentes. Para registar essas
variacoes de fase torna-se necessario converté-las em variagdes de amplitude, o que pode ser conseguido através da

interferéncia de duas ondas: a onda proveniente do objecto e uma outra onda coerente, dita de referéncia.
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7.2. O processo holografico

Onda objecto
% A |

Placa hologriéfica

AA

Onda de referéncia

Figura 7.1 - Montagem experimental tipica para o registo de um holograma. £, E, e E| : espelhos; DF" divisor de feixe.

Na Fig. 7.1 mostra-se uma montagem tipica utilizada para o registo de um holograma. O feixe laser inicial é
dividido em dois feixes mutuamente coerentes. Um deles dirige-se directamente para a placa de registo e constitui
a chamada onda de referéncia. O outro feixe ilumina o objecto em causa e a luz por ele reflectida constitui a onda
objecto. As ondas objecto e de referéncia interferem na placa holografica, na qual existe um meio sensivel a luz que
regista a distribuicao espacial de intensidade do padrao de interferéncia.

Num momento posterior, a placa holografica pode ser iluminada por uma réplica da onda de referéncia,
designada por onda de reconstru¢do. O padrao de interferéncia registado na placa difracta essa onda de
reconstrucao, permitindo reobter a onda objecto.

Analisa-se a seguir com mais detalhe os aspectos principais do processo holografico, nomeadamente os que

se referem as fases de registo e de reconstrucio da imagem hologréafica.

7.2.1. Registo holografico

Considere-se o registo holografico de um objecto, realizado numa placa fotografica que se situa no plano xy.
A onda objecto apresenta nesse plano uma amplitude complexa E, (x, ). Se apenas existisse esta onda, o filme

seria escurecido em func¢@o da sua intensidade, dada por:
2 *
1, =|E,[ =E,E, (7.1
Neste caso, o registo ndo conteria nenhuma informacao relativa a fase da onda objecto. Contudo, na

presenca igualmente de uma onda de referéncia com uma amplitude complexa E,(x,y), o campo eléctrico

resultante no ponto (x,)) da placa fotografica é dado por:
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E(x:y):EO(xay)+ER(x>y)’ (72)

Deste modo, a intensidade registada é dada por:

1(x,) =|Eq(x, )+ Ex (o, )| = EgEg + EoEg + ExE,y + ELE, (7.3)

O padrao de distribuicao da intensidade, dado pela Eq. (7.3), pode ser registado usando diferentes métodos.
Considera-se a seguir o caso em que o meio de registo é um filme fotografico, cujas caracteristicas sao dadas pela
chamada curva de Hurter-Driffield (H&D) (Fig. 7.2). Esta curva mostra a varia¢do da densidade da emulsio

depois do registo, D, com o logaritmo da exposi¢ao B (energia/area), dada por:
B =1, (7.4)

onde 7, € o tempo de exposigao. A densidade éptica da emulsdo depois do registo é definida na forma:

D=log— (7.5)

regiao linear,

‘Aa 1g0=y -

Log B

Figura 7.2 — Aspecto tipico da curva H&D.

No caso do registo fotografico convencional, e para que esse registo seja linear em termos da intensidade,
procura-se controlar o tempo de exposicao de modo a operar-se na regido linear da curva H&D. Neste regime,

tem-se a relagdo:
D =y, log B-D, =y, log (It,) - D, (7.6)

onde y, € o chamado gama do filme, dado pelo declive da parte linear da curva H&D. O indice N neste parametro
indica o facto deste registo corresponder ao negativo do sinal original. [luminando esse negativo com uma onda

de reconstrucio com intensidade /, , tem-se que a intensidade transmitida é dada por:
I=17=110" (7.7
Substituindo a Eq. (7.6) na Eq. (7.7) obtém-se:
1, =C,II7" (7.8a)
onde

C, =107 (7.8b)
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Como se verifica da Eq. (7.8), a intensidade transmitida ndo é uma reproducao linear da intensidade
original /. Contudo, como se faz habitualmente em fotografia, pode-se obter a partir desse negativo um registo
positivo do sinal original. [luminando essa c6pia positiva com uma onda de reconstrucio £, (x, y), tem-se que a

intensidade transmitida é dada por:

]tP = CP[RIVP}/N (7.9)

onde 7, é o gama associado com o registo da copia positiva. Verifica-se da Eq. (7.9) que a relacdo entre as
intensidades transmitida e registada é linear se se verificar a condicdo 7, 7, = 1.

Em holografia, o processo de registo deve ser tal que o holograma proporcione uma onda transmitida
cuja amplitude corresponda a uma reprodugio linear do padrao de interferéncia criado pelas ondas objecto e de

referéncia. A partir da Eq. (7.9) verifica-se que, neste caso, se devera ter
Wr=2 (7.10)

A exposi¢ao correcta para um registo holografico linear corresponde a um funcionamento, nao na regiao

linear da curva H&D, mas antes na regiao linear da curva de 7 vs B, representada na Fig. 7.3. Nessa zona, tem-se:
t=t,+pBB =1, +plt, (7.11)

onde 7, € ﬂ sao constantes.

0t e
0 B

Figura 7.8 — Coeficiente de transmissao em amplitude de uma placa holografica em funcio da energia de exposicao B.

7.2.2. Reconstrucao e localizagao da imagem

Tluminando o holograma com uma onda igual a onda de referéncia (agora chamada onda de reconstrucao),
pode-se obter uma réplica da onda objecto original. O campo correspondente a luz transmitida pelo holograma

é dado por:
E (x,y) =7(x, y)Eg

=10Ep +PtgER(EREp + EQEpy + EQEp + EREp) (7.12)

onde se usou as Eq.s (7.11) e (7.3).

Os trés primeiros termos resultantes do membro direito da Eq. (7.12) correspondem a uma versao modulada
em amplitude da onda de reconstrugdo. Considerando o holograma como uma rede de difracgéo, estes termos
representam o feixe luminoso nao deflectido, isto é, a ordem zero, enquanto que o quarto e quinto termos na

Eq. (7.12) representam as ondas difractadas de primeira ordem. O quarto termo proporciona uma imagem directa
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(virtual) do objecto original, localizada atras do holograma. O quinto termo corresponde a uma imagem conjugada
(real) do mesmo objecto, situada a frente do holograma. A Fig. 7.4 mostra a localizacdo das imagens quando a

direccdo de propagacao das ondas de referéncia e de reconstrucao é perpendicular ao holograma o holograma.

EU
Feixe de reconstrugio
= ¢ 70 Ordem zero
= 0 g
& E;
Imagem virtual Imagem real

Figura 7.4 — Localizagio das imagens quando a direc¢@o de propagacao das ondas
de referéncia e de reconstrucao é perpendicular ao holograma.

Atendendo as suas caracteristicas, a imagem conjugada é geralmente de utilidade reduzida. De facto, esta
imagem mostra o objecto de dentro para fora, sendo a profundidade da cena invertida ao longo do eixo de visdo.
Os pontos do objecto mais préximos do observador revelam-se mais afastados na imagem real.

O quarto termo no membro direito da Eq. (7.12) reproduz, a menos de um factor constante, a onda
objecto £, . Olhando através do holograma como se fosse uma janela, pode-se ver uma imagem tridimensional
da cena, com os objectos situados exactamente nas suas posigoes originais. Os efeitos de paralaxe sao facilmente
observados, podendo-se ver aspectos diferentes da cena movendo um pouco a cabeca.

De modo a obter-se a onda objecto, £, em boas condicdes, deve-se procurar evitar a sua interferéncia com
as outras ondas. Este objectivo pode ser facilmente conseguido desde que as ondas objecto e de referéncia facam

entre si um angulo conveniente, como se mostra no problema PR 7.5.

/.3. Hologramas de fase

No caso mais geral, o coeficiente de transmissdo da placa holografica é uma func¢do complexa e pode

escrever-se na fOI‘ma:
T(x, ) =1(x,y)explig(x, )] (7.13)

Podem-se considerar dois casos limites no registo de um holograma: o holograma de amplitude (¢ = const.) e
o holograma de fase (7 = const). Em ambos os casos toda a informacao contida na onda objecto é registada na placa

holografica. )
¢ ¢p=¢,+F'B

S %

o~

0 =
0 B

Figura 7.5 — Fase do coeficiente de transmissao de uma placa holografica em fun¢ao da energia de exposicao B.
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A fase do coeficiente de transmissdo de uma placa holografica varia com a exposi¢ao B como se representa

na Fig. 7.5. Na zona linear dessa curva pode escrever-se:

o) =, + p' 11, (7.14)

Quando ¢(/)«m /2 o coeficiente de transmissao do holograma de fase pode ser aproximado por uma fun¢io

linear da intensidade I:

T =explip(D)]=1+ip(I)
=1 +ip) +ip'lt, (7.15)

Quando a imagem € reconstituida a partir de um holograma de fase obtém-se:
E (x, y)= (1 +ip( (x, y)) E,

=(1+i@))Ey +if't,EQ(ExEx + E E, + E,Ey + EE,, (7.16)

Como acontece na Eq. (7.11) para o caso do holograma de amplitude, também aqui se tem cinco termos.
Contudo, em consequéncia da aproximacio adicional exp(i@) =1+ i@, verifica-se que os efeitos ndo-lineares sdo

mais acentuados nos hologramas de fase do que nos hologramas de amplitude.

7.4. Configuracoes holograficas

Uma condicgo essencial para arealiza¢gdo de um holograma é a existéncia de uma fonte de luz monocromatica
e suficientemente coerente. As ondas objecto e de referéncia devem ser mutuamente coerentes para que a sua
sobreposicao resulte num padrao de interferéncia estavel. Nesse sentido, a geometria da montagem deve ser tal
que os percursos das duas ondas sejam semelhantes. De facto, se a diferenca entre esses percursos for superior ao
comprimento de coeréncia da luz, ndao chegara a formar-se o padrao de interferéncia desejado no filme fotografico.

Estas limitacGes podem ser ultrapassadas com relativa facilidade quando a fonte de luz é um laser.

7.4.1. Holografia em linha

O método mais simples de realizar um holograma consiste em iluminar uma placa holografica com um
feixe laser expandido através do objecto, o qual deve ser suficientemente transparente para o efeito (Fig. 7.6). Este
método foi introduzido por Gabor e é pouco exigente no que se refere a coeréncia da luz utilizada. A onda objecto
é formada pela luz dispersa pelas particulas do objecto, enquanto que a onda de referéncia é constituida pela luz
que passa entre essas particulas sem ser afectada.

No caso de um objecto com dimensoes muito reduzidas, a onda difundida é praticamente esférica e o padrao

de interferéncia na placa fotografica é constituido por uma série de franjas circulares concéntricas. Esta distribui¢ao
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de intensidade é semelhante a que se obtém no caso de uma placa zonada de Fresnel. Como se viu no capitulo 4, uma
placa zonada de Fresnel funciona como uma lente. Pode considerar-se que cada ponto de um objecto extenso da

origem a uma placa zonada de Fresnel e que o holograma corresponde a sobreposi¢ao de todas essas placas zonadas.

Holograma

Figura 7.6 — Registo de um holograma colinear

7.4.2. Holografia fora do eixo

A configuragdo em linha considerada antes e utilizada por Gabor tem o grande inconveniente de a imagem
conjugada se formar na mesma direccao da imagem verdadeira. O método utilizado para resolver este problema
consiste em fazer com que as ondas objecto e de referéncia tenham direccdes diferentes. Esta técnica parece
constituir uma modificagdo trivial da configuracao em linha utilizada por Gabor; contudo, passaram cerca de dez
anos ap0s o trabalho pioneiro de Gabor até que a nova técnica tivesse sido sugerida por Leith e Upatnieks.

A Fig. 7.1 mostra uma montagem tipica para realizar a holografia fora do eixo. A luz do laser ¢é dividida
em dois feixes, os quais sdo depois expandidos usando objectivas microscépicas. A luz difundida pelo objecto
interfere com a onda de referéncia e o padrdo de interferéncia resultante é registado na placa holografica.
Devido ao comprimento de coeréncia limitado da fonte, deve procurar-se que os percursos opticos das ondas
objecto e de referéncia sejam semelhantes, optimizando desse modo o contraste do padrao de interferéncia na
placa holografica. Quando a reconstru¢ao do holograma é feita usando a mesma montagem, deve proceder-se a
obstrucao da onda objecto, ou simplesmente a remogao do divisor de feixe.

O padrao de interferéncia deve permanecer estacionario durante o tempo de exposi¢do para que o seu
registo se processe de modo satisfatério. A qualidade do holograma é bastante afectada, mesmo no caso de o
movimento do padrio corresponder a uma pequena fraccao do periodo espacial das franjas. Importa, por isso,
que as posicoes de todos os componentes da montagem que possam afectar os percursos 6pticos das ondas objecto
e de referéncia — espelhos, divisores-de-feixe, o préprio objecto, etc. — permanecam fixas durante a exposi¢ao da
placa holografica. Estas exigéncias poderao ser satisfeitas com relativa facilidade se a montagem holografica se
encontrar sobre uma mesa optica suficientemente massiva e sustentada por um conjunto de cilindros pneumaticos.
A massa elevada da mesa proporciona inércia mecanica, enquanto que o sistema pneumatico isola de modo eficaz

a mesa das vibracoes que possam afectar o laboratdrio.

7.5 Classificacao dos hologramas

Os hologramas podem ser classificados de acordo com o angulo feito entre as direc¢oes de propagacao das

ondas objecto e de referéncia.
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7.5.1. Hologramas finos

Na maioria dos casos, as emulsoes fotograficas apresentam uma espessura entre 5 e 16 pm. Neste caso,
quando o angulo feito entre as ondas objecto e de referéncia, ¢ pequeno (¢ < 10°), 0 espacamento entre as franjas de
interferéncia das duas ondas é semelhante a espessura da emuls@o. Neste caso, o meio de registo pode considerar-
-se bidimensional e o holograma assim obtido é chamado holograma fino. Quando os angulos de incidéncia das
ondas objecto e de referéncia, medidos relativamente a normal a superficie holografica, sdo simétricos, as franjas

registadas sdo perpendiculares a essa superficie.

7.5.2. Hologramas espessos

Quando o angulo entre as ondas objecto e de referéncia é moderadamente grande, situando-se no intervalo
compreendido entre os 10° e os 120° o espagamento entre as franjas € inferior a espessura do meio de registo e o
holograma resultante é designado por holograma espesso (Fig. 7.7a). Quando as duas ondas incidem simetricamente
em relacdo a normal a essa superficie as franjas registadas na emulsao fotografica sdo perpendiculares a superficie
do holograma.

Tipicamente, a frequéncia espacial do padrao de interferéncia que se pretende registar é de varias centenas,
chegando mesmo aser daordem das 1000linhas por milimetro. Estruturas tao finas como estas nao podem ser registadas
em filmes fotograficos normais, cuja capacidade de registo se limita a cerca de 100 linhas/mm. Sao necessarias para o

efeito emulsoes fotograficas especiais, tais como as da Eastman Kodak tipo 649F e as da Agfa Gevaert tipo 8E70.

Onda de referéncia

Onda de reconstrug¢iio Onda objecto

Onda objecto

(@) ®
Figura 7.7 - Representacio das fases (a) de registo de um holograma espesso e
(b) de reconstrucao da onda objecto a partir desse holograma.

A teoria usada para descrever a luz difractada por um holograma espesso (Fig. 7.7b) tem por base a lei
de Bragg. Supondo que o espacamento entre as franjas é d e que o angulo entre o plano dessas franjas e a onda de

reconstrucdo é a, a condi¢ao de Bragg é dada por:
2dsena=ni, n=1,2, .. (7.17)

A necessidade de satisfazer a condi¢do de Bragg faz com que a reconstru¢io da imagem holografica, a
partir de um holograma espesso, seja muito sensivel ao angulo que a onda de reconstrugdo faz com o holograma.
Por outro lado, essa dependéncia angular faz com que seja possivel, usando ondas de referéncia com diferentes
angulos, registar varios hologramas na mesma emulsdo. A partir de cada holograma pode-se reconstruir a
respectiva onda objecto, sem que isso implique a reconstrucao das outras ondas objecto também registadas na
mesma placa. A Eq. (7.17) evidencia que a onda difractada por um holograma espesso é também sensivel ao

comprimento de onda usado na reconstrucao.
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Tanto nos hologramas espessos como nos hologramas finos, considerados na sec¢ao anterior, o observador olha
através do holograma para ver a imagem hologréfica. Trata-se, pois, em ambos os casos, de hologramas de transmissdo,

que se obtém sempre que as ondas objecto e de referéncia incidem no mesmo lado da emulsao (Fig. 7.7a).

7.5.3. Hologramas de reflexao

A configuragdo que proporciona um angulo maximo entre as ondas objecto e de referéncia corresponde
a situacdo em que essas ondas incidem em lados opostos da emulsdo, como se representa na Fig. 7.8a. Neste
caso, obtém-se uma rede de difraccdo tridimensional denominada holograma de reflexdo. De facto, no processo
de reconstrucdo, estes hologramas reflectem a luz na direccao do observador (Fig. 7.8b), o qual vé uma imagem

virtual atras do holograma (como se fosse num espelho).

Onda objecto

. Onda de reconstrugio
Onda de referéncia

Onda objecto

(@) ()
Figura 7.8 - Representacdo das fases (a) de registo de um holograma de reflexao e
(b) de reconstrucao da onda objecto a partir desse holograma.

A teoria usada para descrever a luz difractada por um holograma de reflexdo tem por base a condi¢ao
de Bragg dada pela Eq. (7.17). Supondo que se tem » = | nesta equagdo e considerando um dado angulo de
observacdo a, a interferéncia construtiva entre as ondas reflectidas acontece apenas para um certo comprimento
de onda A, sem que se verifique qualquer perturbacdo das ondas com outros comprimentos de onda. Ou seja,
quando iluminado por luz branca, este tipo de hologramas funciona como um filtro de comprimentos de onda,

permitindo a reconstrucdo da imagem apenas para o comprimento de onda A, .

Placa hologréfica

Objecto

Figura 7.9 — Montagem para o registo de hologramas de luz branca.

A Fig. 7.9 mostra uma montagem que permite a obtencao de hologramas de luz branca. Para o registo
é necessario utilizar uma fonte de luz coerente (laser). O feixe laser é expandido, colimado e dirigido através
da placa fotografica para o objecto. A onda de referéncia corresponde a luz que provém directamente do laser,

enquanto que a onda objecto corresponde a luz que é difundida por esse objecto.
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7.6. Interferometria holografica

Uma das aplicagdes mais importantes da holografia reside na area da interferometria. De facto, a holografia
permite guardar aamplitude e a fase da onda objecto que podera ser usada posteriormente para fins interferométricos.
Esta técnica torna igualmente possivel a comparacio de um objecto consigo proprio num instante posterior.

Dada a sua grande sensibilidade, a interferometria holografica pode ser usada para obter informacao
importante no que respeita as caracteristicas estruturais de um dado objecto, observando o movimento da sua
superficie quando ele é sujeito a uma tensdo. Assim, esta técnica permite realizar uma grande variedade de
inspecgdes nao-destrutivas, sempre que o parametro de interesse se manifesta através de descontinuidades no
deslocamento da superficie desse objecto. Essas descontinuidades aparecem como uma anomalia num padrio

de franjas de interferéncia que seria em principio regular, permitindo deste modo identificar a regido defeituosa.
Interferometria holografica em tempo real

Neste método, comega-se por obter e processar o holograma do objecto. Em seguida, ilumina-se o holograma
com a onda de referéncia e faz-se interferir a imagem reconstruida com a onda proveniente directamente do
objecto. As franjas de interferéncia indicam a deformacio actual do objecto relativamente a situacdo em que a
sua imagem foi registada no holograma. Essa deformacao pode ser acompanhada em tempo real através desse
sistema de franjas. Neste método, o objecto nao pode geralmente ser removido da sua posi¢do, dado que se torna

praticamente impossivel recolocéa-lo exactamente na mesma situagao relativamente ao holograma.
Método da dupla-exposi¢io

Neste método a placa holografica é exposta duas vezes: uma primeira vez com o objecto nao perturbado
e depois uma outra vez com o objecto sob o efeito da perturbagido. Deste modo, ambas as frentes de onda sido
registadas na mesma placa holografica. Quando o holograma é iluminado com a onda de referéncia, ambas as
ondas sao reconstruidas e interferem, dando origem a um padrao de franjas que traduz o deslocamento dos varios
pontos do objecto. A descrigao tedrica deste método é semelhante a que foi apresentada na seccao anterior para o

método da holografia em tempo real.
Método da holografia em tempo médio

O método da holografia em tempo médio é mais adequado para o caso de objectos sujeitos a um movimento
vibratorio periédico. A exposi¢do, neste caso, ocorre durante um tempo relativamente longo, quando comparado
com o periodo de vibracdo. A imagem final pode ser considerada como o resultado da sobreposi¢ao de um grande
numero de imagens, formando um padrao de ondas estacionarias. As franjas claras revelam as zonas nodais, que
se mantém estacionarias durante a exposi¢ao, enquanto que as linhas de contorno (franjas escuras) correspondem

a zonas com amplitude de vibracio constante.
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/.7. QOutras aplicacoes da Holografia

Para além da interferometria holografica descrita na Secc¢ao 7.6, a holografia proporciona uma grande
variedade de outras aplicacoes. Entre elas pode-se referir o reconhecimento de padrées. Neste ambito, pode-se,
por exemplo, pretender examinar um texto a procura de uma dada palavra. A luz proveniente desse texto passa
através de um holograma da palavra procurada num sistema 6ptico adequado. A presenca da palavra em causa
é indicada, no local onde ela se encontra, pelo aparecimento de uma mancha brilhante. O holograma funciona,
assim, como um filtro, que reconhece e transmite apenas o padrio de frequéncias espaciais semelhante ao que se
encontra registado nele. Esta técnica podera, eventualmente, vir a ser usada por robos, levando a identificacao de
certos objectos e ao consequente direccionamento do seu movimento.

Outra aplicacdo muito importante da holografia reside no armaszenamento de informagdo. Atendendo
a que a técnica holografica permite reduzir essa informacgio a dimensées da ordem do comprimento de onda,
adivinha-se que um tnico holograma de volume podera armazenar uma enorme quantidade de informacao. Esta
quantidade pode ser aumentada rodando o holograma e realizando sucessivamente novas exposicdes. Alias, em
vez de uma placa fotografica convencional, pode-se usar para este efeito certos cristais fotossensiveis, como seja
o cristal de niobato de litio. Teoricamente, supde-se que toda a informag¢ido de uma grande biblioteca podera ser
armazenada num destes cristais com as dimensdes de um cubo de agticar!

Outro aspecto fascinante do armazenamento holografico de informacao refere-se a sua seguranca. Esta
caracteristica tem que ver com o facto de qualquer dado ficar registado em todo o volume do holograma. Deste
modo, a danificacao de uma parte do holograma nao impede a reconstruco posterior desse dado a partir da parte
nao danificada. Essa danificagio terd algum impacto apenas ao nivel da razao sinal-ruido na imagem reconstruida.

As ondas usadas na realizacdo de um holograma ndo tém de ser necessariamente de natureza
electromagnética, podendo-se usar para o efeito também ondas ultra-sénicas. Atendendo a capacidade destas
ondas para penetrar objectos que sdo opacos para a luz visivel, reconhece-se facilmente que os hologramas
realizados com estas ondas — os chamados hologramas ultra-sénicos — poderao ser bastante tteis. A holografia
ultra-sénica podera, por exemplo, proporcionar imagens tridimensionais de estruturas ou cavidades existentes

dentro dos mais variados corpos opacos, nomeadamente do corpo humano.

7.8. Problemas resolvidos

PR 7.1. Assuma que as posicoes do objecto e da fonte do feixe de referéncia se encontram ambas a 100 cm do meio
de registo e separadas entre si 10 cm. Determine a resolu¢do minima que o filme holografico deve ter se se usar luz

com um comprimento de onda 4 =500nm. Que tipo de holograma sera registado neste caso?

Resolucao

O problema pode ser tratado com base nos resultados obtidos no capitulo 3 para a interferéncia entre
duas ondas coerentes. No caso presente, o objecto e a fonte do feixe de referéncia assumem o papel das duas
fendas, separadas de A, na experiéncia de Young. O espacamento, Ay, entre franjas consecutivas no padrao de

interferéncia formado a uma distancia D é dado pela Eq. (3.25):
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D
Ay=—A41. 1
Y4 I ®

Usado os dados do problema, tem-se D = 100 cm e 2 = 10 cm, pelo que,

Ay=——>5x10"=5%x10"m ©)

107!
Para poder registar o padrao de interferéncia, o filme holografico deve ter uma resolu¢do minima:
R=Ay ' =2x10’ linhas/m (3)

O angulo entre as ondas objecto e de referéncia é dado por:

x1072

= 2arctg[5 J ~0.lrad ~ 6° (4)

pelo que se trata de um holograma fino.

PR 7.2. Pretende-se produzir uma rede de difrac¢do usando a técnica holografica e a luz emitida por um laser
de Hélio-Néon (A = 532.8 nm). Calcule os angulos a considerar para que a rede tenha 500 linhas por milimetro.

Qual é a frequéncia maxima possivel da rede?

Resolucio
A rede de difraccao pode ser produzida registando o padrao de interferéncia de duas ondas planas numa

placa holografica. Os campos das duas ondas planas incidentes na placa podem ser representadas por
E =Ae™, E,=4e™. €y

Supondo que a placa se situa no plano xy e que as ondas se propagam no plano yz, as suas fases podem

escrever-se na forma
¢ =ksen8y, ¢, =ksenb,y (2)

onde 6, e 8, sao os angulos que os vectores de onda fazem com a normal a placa (coincidente com o eixo dos z).

A menos de um factor constante, a distribuicao de intensidade na placa holografica é dada por:
1= A + 43 +2/4)|4,|cos(¢ - 4,) 3
Havera uma franja brilhante quando cos.(¢1 - ) =1, ou seja,

& —¢, :%y[senﬁl —send,|= p2x» (4)

sendo p um nimero inteiro. Da Eq. (4) tira-se que a posi¢ao da franja brilhante de ordem p é:

pA (5)

y =
? sen® —send),

O espacamento entre franjas consecutivas é dado por

A (6)

Ay = — [ —
VYT sen @, —sen 6,
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Se a normal a placa bissectar o angulo (¢ ) formado entre as duas ondas, tem-se 8, =—6, = @/2, pelo que

a frequéncia espacial f =1/Ay se pode escrever na forma

r= 2 seni(p/Z) )

Considerando uma frequéncia de 500 linhas por milimetro, tem-se

8x107°
p=2 arcsen(/zl fj = 2arcsen(63282x>< 5 xlOSJ =18.20° (8)
Assim, as duas ondas devem fazer um angulo de 9.1° com a normal.

A frequéncia maxima obtém-se quando sen((p/ 2) =1, sendo dada por

f:%:3160,6/mm 9)

PR 7.3. Considere a interferéncia entre duas ondas luminosas planas, com a mesma amplitude e monocromaticas,
com um comprimento de onda no vazio A =632.8 nm. A onda 1 propaga-se na direc¢ao do eixo dos z, enquanto
a onda 2 se propaga no plano xz, fazendo um angulo @ =0.1rad com o eixo dos z. O padrao de interferéncia é
registado numa placa holografica, situada no plano xy e de largura / = 10 cm na direc¢ao do eixo dos x, Determine

o ntmero de franjas brilhantes registadas nessa placa holografica.

Resolucio
Os campos das duas ondas no plano xy sao dados por

E, = E,expl-k,-7)=E, )
P 27

E, :Eoexp(—kz-r):EOexp —zjxsené’ (2)
O campo resultante é obtido usando o principio da sobreposicao:

E=E +E, :E{1+exp(—i2;xseneﬂ 3)
A distribui¢ao de intensidade no padrao de interferéncia é dada por

2 2
I1=EE*=2E; {1+cos(ﬂxsen6’ﬂ (49

O espacamento entre as franjas corresponde ao periodo espacial da distribui¢do de intensidade:

A A
send 0 (5)
Substituindo os valores dados, tem-se
-9
TR ®
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O numero de franjas registadas na placa holografica é:

N:i:15873 )
Ax

PR 74. Quando iluminada por uma onda luminosa, a placa holografica desenvolvida no problema PR 7.8 funciona
como uma rede de difrac¢do. Supondo que essa onda é semelhante a onda 1, mostre que o campo transmitido

pode ser considerado como a soma de trés ondas. Interprete este resultado.

Resolucao

O coeficiente de transmissdo em amplitude da placa holografica é dado pela Eq. (7.11):
5 2
T=10+ plt, =1, +2pt3E5| 1+cos szenﬁ ¢))

Onde z,, B, e t,sdo constantes, enquanto / foi substituido pela Eq. (5) do problema PR 7.3. Quando
iluminado pela onda 1, o campo transmitido pela placa holografica é dado por:

E =1 =4 exp(— Zﬂﬂzj +B exp[— i%(x sen6 + z)} +B exp[izf(x senf — z)} 2
onde

A=1,E,+2pt,E; (3)

B=pt,E, (4)

O primeiro termo na Eq. (2) representa a onda transmitida directamente através da placa holografica
(ordem zero da difrac¢do), enquanto os segundo e terceiro termos representam as ondas difractadas de primeira
ordem, fazendo angulos 8 e —@ com o eixo dos z, respectivamente. Em particular, o terceiro termo representa a

onda 2 do problema PR 7.8 reconstruida.

PR. 7.5. Obtenha uma expressao para o angulo segundo o qual se forma a imagem conjugada, assumindo que
a onda objecto é uma onda plana e que incide no holograma fazendo um angulo § com a normal, enquanto
as ondas de referéncia e de reconstrugdo sdo gualmente ondas planas, incidindo segundo um angulo y com a

normal. Indique uma condi¢do para os dngulos @ e y que garanta o desaparecimento dessa imagem conjugada.
Resolucio

Assumindo que a onda objecto é uma onda plana e que incide no holograma, situado no plano xy, fazendo
um angulo # com a normal, tem-se

E, = exp(—ikxsen 6) )

onde se omitiu um factor comum exp(i@r) . A onda conjugada da onda objecto, Eg , ¢ dada por

E,, = exp(ikxsen 0) = exp|- ikxsen(-0)] (2)
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. * . A
Ou seja, a onda E,, deixa o holograma fazendo um angulo — 6 com a normal.
Se as ondas de referéncia e de reconstrucdo, E,, forem igualmente ondas planas, incidindo no holograma

segundo um angulo y com a normal, tem-se:
E, = exp(—ikxseny) 3)
E; = exp(—ikx2seny) (4)

Usando as Eq.s (2) e (4), obtém-se o seguinte resultado para o ultimo termo na Eq. (7.12), E122 E;,

correspondente 2 imagem conjugada:

EXE,, = exp|-ikx(2sen y +sen(—6))| = exp(—ikxsen @) (5)
onde

sen@ = 2sen y +sen(—0). (6)

Na Eq. (6), ¢ é o angulo que a onda correspondente a imagem conjugada faz com a normal ao holograma.

A imagem conjugada deixa de ser observada quando

2seny +sen(—6) > 1. 7

PR 7.6. Pretende-se analisar a deformacéo de um objecto usando o método da integerometria holografica em
tempo real. Considere um ponto P na superficie do objecto, que sofre um deslocamento d, de apenas alguns
comprimentos de onda, para o ponto P’, como se representa na Fig. 7.10. Assumindo que as amplitudes das ondas
E e E', provenientes do holograma (onda reconstruida) e do objecto, respectivamente, sdo iguais em mddulo,

obtenha uma expressio para a intensidade do padrio de interferéncia em funcao de d e dos dngulos y e 6.

P

[luminagdo

Figura 7.10 — Geometria para o célculo da diferenca de fase entre os campos E e E',

quando o ponto objecto é deslocado de P para P’

Resolugao

Assumindo que as amplitudes das ondas E e E', provenientes do holograma (onda reconstruida) e do
objecto, respectivamente, sao iguais em modulo, verifica-se apenas uma diferenca de fase Ay =y, -y, entre
elas, tendo-se:

E'= E exp(iAy) )
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A intensidade correspondente a sobreposi¢ao das duas ondas é dada por:
]:(E+E')(E+E')*=4IOCOSZATV/ (2)

onde /, = EE*. A Eq. (2) é semelhante & Eq. (3.7), obtida para o caso da experiéncia de Young. A diferenca de fase
Ay é determinada pela diferenca de percursos entre as ondas interferentes. Considerando a geometria da Fig.

7.10, tem-se que essa diferenca de percursos és =u + v e
u=dcosd, v=dcosy 3)

Deste modo, a diferenca de fase é dada por

Ay =k(u+v)=kd(cos@+cosy) (4)
onde k é o nimero de omda. Substituindo a Eq. (4) na Eq. (2), obtém-se
=41, cosz[kj(cos 7 +cos 9)} (5)

Os angulos 7 e 6, assim como o nimero de onda k, podem ser conhecidos a partir da configura¢io

experimental.

PR 7.7.Numa experiéncia de interferometria holografica, a superficie a estudar é iluminada perpendicularmente
por luz com comprimento de onda 4 =500 nm. Se o deslocamento a ser determinado é de 4000 nm, diga quantas
franjas serfio contadas quando

a) o deslocamento é perpendicular a superficie;

b) o deslocamento faz um angulo de 60° com a normal.

Resolugao

a) Como se viu no Capitulo 3, quando um dos espelhos do interferémetro de Michelson sofre uma translagao
de 4, /2, cada franja no padrao de interferéncia desloca-se de modo a ocupar o lugar da franja adjacente. Deste
modo, a uma distancia Ad percorrida pela superficie a estudar na direccdo da normal corresponde um nimero,

N, de franjas que passam por uma dada posicao de referéncia, dado por:

_2Ad o)
A

Usando os valores 4, =500 nm e Ad =4000 nm, tem-se

N

_2x4x10°°

Sx107 =16 franjas (2)

b) Se o deslocamento fizer um angulo de 60° com a normal, tem-se

N:&cosé’=16xcos60°:8 franjas 3)
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PR 7.8. Considere o caso de um objecto oscilando de modo sinusoidal, com uma amplitude d e uma frequéncia
angular @ . Tendo por base a geometria da Fig. 7.10 para o caso ¥ =6 =0, obtenha uma expressdo para a

intensidade da onda objecto reconstruida e represente-a graficamente.

Resolugao

Pode-se escrever a onda objecto na forma:

E (f) = Aexp(—ik2dsenwr) »

A energia de exposi¢ao pode ser obtida na forma:
73

B=|1()dt (2
0

sendo a intensidade resultante dada por:
](t):(Eo(l)+ER)(EO(t)+ER)* 3)

Por outro lado, o coeficiente de transmissao em amplitude da emulsao fotografica na zona linear da Fig. 7.3
pode ser escrita na forma:

T=1,+ /B (4)

Usando como onda de reconstrugao a onda de referéncia E,, obtém-se os quatro termos referidos na Seccio

7.2, um dos quais corresponde a imagem directa do objecto, dada por:
2
E, = ﬁ‘ER‘ on(t)dt
0

Iy
= BE,[* [ Aexp(-ik2dsencryds %)
0

O integral do membro direito na Eq. (5) pode exprimir-se em termos da funcao de Bessel de ordem zero,

J,» que é definida do modo:
l 27
Jo(a)=— Jexp(iasent)dt (6)
27y
Deste modo, a intensidade da onda objecto reconstruida pode ser dada na forma:
1,=E,E, < J;(2kd) (n

Na Fig. 7.11 mostra-se o grafico da funcao J, (f . A func¢ao tem zeros para a ~ 2.405, 5.52, ..., que nao sao equi-

distantes. Por outro lado, a altura dos maximos de ordem superior diminui com o aumento da diferenca de fase.

Ji (@)

N

-9.0 6.0 -3.0 0.0 3.0 6.0 9.0

QY

Figura 7.11 - Gréfico da funcio J; (c).
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7.9 Problemas propostos

PP 7.1. Descreva o principio da holografia, comparando-a com a fotografia. Justifique a importancia da coeréncia

da luz usada no registo holografico.

PP 7.2 Partindo das Eq.s (7.5) e (7.6), obtenha as Eq.s (7.8a) e (7.8b) para a intensidade transmitida quando o

negativo do registo holografico é iluminado por uma onda de reconstrugdo com intensidade 7, .

PP 7.8. Mostre que, no sentido de o holograma proporcionar uma onda transmitida cuja amplitude seja uma
reproducdo linear da intensidade registada, os gamas correspondentes as copias negativa e positiva devem

satisfazer a condicdo yyyp =2.

PP 7.4. Explique por que razao os efeitos ndo-lineares sio mais acentuados nos hologramas de fase do que nos

hologramas de amplitude.

PP 7.5. O filme fotografico Kodak Tri-X tem uma resolu¢ao maxima de cerca de 50 linhas/mm. Qual é o angulo ma-

ximo entre as ondas objecto e de referéncia para este filme se se usar luz com comprimento de onda A = 632.8 nm?

PP 7.6. Regista-se um holograma, de tal modo que as ondas objecto e de referéncia incidem no filme segundo um
angulo de 25° e de 45°, respectivamente. Usando a mesma onda de referéncia durante a reconstrucao, segundo
que angulo se formara a imagem conjugada? Para que valor do Angulo de incidéncia da onda de reconstrugio se

verifica o desaparecimento da imagem conjugada?

PP 7.7 Pretende-se produzir uma rede de difrac¢ido usando a técnica holografica e luz com um comprimento de
onda A = 550 nm. Esboce um esquema da montagem a utilizar e calcule os angulos a considerar para que a rede

tenha 500 linhas por milimetro.
PP 7.8. Um holograma de luz branca é registado usando luz com comprimento de onda 4 = 660 nm, de tal modo

que as ondas objecto e de referéncia sio ambas perpendiculares a placa holografica. Durante a reconstrucao, para

que valor do angulo de incidéncia aparece a imagem com uma cor verde ( A = 500 nm)?
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Capitulo 8

OPTICA NAO-LINEAR

Assim como um sistema mecanico simples (por exemplo, uma mola) pode manifestar uma resposta nao-
-linear quando se encontra sujeito a forgas suficientemente intensas, também é razoavel supor que um dado meio
material, quando percorrido por um feixe luminoso de intensidade elevada, evidencie efeitos ndo-lineares. De
facto, estes efeitos tornaram-se facilmente observaveis com o advento de fontes de luz suficientemente intensa
e coerente, como sucede com os lasers. Nestas circunstancias, verifica-se que as propriedades épticas do meio
variam com a intensidade da luz e que a interferéncia de duas ou mais ondas luminosas nesse meio deixa de
satisfazer o principio da sobreposi¢ao. A primeira experiéncia no ambito da dptica nao-linear foi realizada por
Peter A. Franken e seus colaboradores na Universidade de Michigan, em 1961, quando observaram pela primeira
vez os fendmenos da geracao do segundo harmonico e de rectificacdo optica.

Neste capitulo serao referidos apenas alguns dos fenémenos mais importantes na area da 6ptica nao-linear,
sendo alguns deles discutidos no caso em que o meio nio-linear é uma fibra éptica. Na realidade, o dominio
da dptica nao-linear é actualmente bastante extenso, contemplando muitos outros fenémenos para além dos

referidos neste capitulo.

8.1. O meio nao-linear

No tratamento habitual da propagacao da luz num meio material assume-se uma relacdo linear entre o

campo 0ptico e a resposta desse meio, i. e., a polarizagio, dada por
P=gyyE (8.1

onde X éasusceptibilidade do meio e g, a permitividade do vacuo. No caso de um meio com caracteristicas nao-

lineares, a susceptibilidade pode ser escrita como uma série de poténcias, na forma:
2
X=+E+BE + (8.2)
Deste modo, substituindo a Eq. (8.2) na Eq. (8.1), tem-se que a polarizac¢do pode ser apresentada na forma:

P=gyE+P, (8.3)
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O primeiro termo no membro direito da Eq. (8.3) corresponde a parte linear da polarizacao, enquanto que

otermo P, corresponde a parte nio-linear e é dado por:
— 2 3 —
Py=eLE + B +.)=P,+ P + .. (8.4)

Os coeficientes linear e ndo-lineares da susceptibilidade, assim como a relagao entre P e E dada pelas Eq.s
(8.3) e (8.4), descrevem completamente a resposta do meio ao campo eléctrico.

De entre os fendmenos resultantes do termo de segunda ordem na Eq. (8.4), P, = g 1, E ?, pode-se referir
a geracdo do segundo harmonico, a mistura de trés ondas, a rectificacao doptica, a amplificacio paramétrica e o
efeito Pockels. Contudo, verifica-se que esse termo se anula e estes fenémenos deixam de ser observados quando

0 meio material é centrossimétrico. Quanto ao termo de terceira ordem na Eq. (8.4),

_ 3
Pi=ex k", (8.5)

ele da origem a fenémenos como a mistura de quatro ondas, a conjugacao 6ptica da fase, a dispersao Raman, a

dispersao Brillouin e o efeito Kerr.

3.2. Propagacao de ondas num meio
nao-linear

Considere-se um meio homogéneo, livre de cargas, isolador e ndo magnético, cujas relagdes constitutivas

sao dadas por:

B=pH (8.6)
D=gE+P (8.7)

A polarizacdo do meio, P, pode ser decomposta numa parte que depende de um modo linear e noutra que
depende de um modo nao-linear relativamente ao campo E , como se indicana Eq. (8.3). Alei de Ampére, dada pela

Eq. (1.10), pode-se escrever com base nos vectores campo magnético, H , e deslocamento eléctrico, D, na forma:

22)
a

VxH = (8.8)

onde se considerou que J=0. Manipulando as Eq.s (1.9), (8.3) e (8.6)-(8.8) de modo a eliminar o campo

magnético, pode-se obter a seguinte equacio de onda para o campo eléctrico num meio nao-linear:

. G*E  o°P
V2E - e T (8.9)
onde
e=gy(l+y) (8.10)
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Em contraste com o que acontece com a equacao de onda linear, no é possivel obter solu¢des analiticas
de ambito geral para a Eq. (8.9). Por este motivo, analisar-se-a a seguir um caso especifico, correspondente ao
problema da interac¢do de trés ondas na presenca de uma nao-linearidade quadratica.

8.2.1. Interaccao de trés ondas

Considere-se a situagdo em que o campo eléctrico é composto por trés ondas planas com frequéncias @,
®, e @y, relacionadas na forma:

=0, + 0, (8.11)

Supondo que as trés ondas se propagam segundo o eixo dos z, pode-se escrever os respectivos campos do modo:
1 . . -

E(w)=E; = 5 [El- (2) exp{t(a)it . kl-z)}+ E, *(z) exp{— l(wit - kl_z)}], i=1,2,3 (8.12)

Assumindo que a amplitude complexa das ondas varia lentamente com a distancia z, tem-se que o primeiro
termo no membro esquerdo da Eq. (8.9) da:

1

V’E, = —;[ 2 i jexp{ (ot —k;z)}+cec. (8.13)

onde c.c. indica o complexo conjugado da expressao anterior.

Considera-se que a parte nao-linear da polarizacio é dada apenas pelos termos de segunda ordem, podendo
ser escrita na forma:

PNL = PNL (wl) + PNL (0)2) + PNL (w3)
= d [E¥(w,)E(0,) + E* (0,)E(w,) + E (0 )E(@,)] (8.14)

onde d é o chamado coeficiente nao-linear. Usando as Eq.s (8.11)-(8.14), pode-se obter da Eq. (8.9) trés equagdes
acopladas, dadas por:

17 ] .

x__in \/EdEE cexpleifhs —ky —k)2)] (815)
k, _ _ia)z\/;dEsEl *exp{— i(k3 —k, —kl)Z)} (8.16)
124 2 \e

az)\/;dE E, exp{~i(k; + k, —k3)z)} (8.17)
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No caso geral, existe uma diferenca de fase entre a onda com frequéncia ¢, e as ondas com frequéncias @

e @, correspondente a:
Ae=ky—k,—k (8.18)

Quando Ak =0 pode-se multiplicar cada uma das Eq.s (8.15)-(8.17) por E; * e obter a seguinte identidade:

1 |g @ 1 |g O 1 |& o
— A (EE*)=— |22 Z(E,E,*)=—— |3 C(E,E,* (8.19)
o, ,uﬁz( 11 ) o, u &( 252 ) o, ,uﬁz( 353 )

A Eq. (8.19) corresponde a lei da conservacao da energia, sendo conhecida por relacdo de Manley-Rowe.

As Eq.s (8.15)-(8.17) podem ser usadas para caracterizar varios fendmenos nao-lineares, tais como a geracao
da frequéncia soma, — como se mostra no problema PR 8.3 —, a amplifica¢do paramétrica — como se mostra no

problema PR 8.4 — e a geracdo do segundo harmonico, que considera a seguir.

8.3. Geracao do segundo harmonico

Consideremos o caso em que @, = w,=® e ©,= 2w, Ak=0e ¢ =¢,= ¢ . Assume-se que os campos
sdo dados por E|, = E, = E(®) exp{i¢(a))} e £, =FEQw) exp{i¢(20))} e que o meio ndo-linear se situa na regiao
z > 0. Admite-se ainda que £; =0 e E, = E, exp{i¢(a))} paraz = 0.

Nestas condigdes, as Eq.s (8.15)-(8.17) resumem-se apenas a duas, que se podem escrever na forma:

) _ —ilAE(a))E(2a)) exp{-iAy} (8.20)
& 2
é’E(ﬁia)) = —iAE2(a)) exp{iAl//} (8.21)
onde
Y \/; o (8.22a)
&
e

Ay =2¢(0)-¢Lw) (8.22b)
De modo a favorecer o incremento do segundo harménico, assumir-se-4 a condigao:

T
Aw =— rad
v 2
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Nesta situac@o e usando a lei da conservacgao da energia, pode-se reescrever a Eq. (8.21) na forma:

E2(0)- E*Qo)] (8.23)

EQo) _ A
&

Integrando a Eq. (8.23) obtém-se a seguinte solu¢ao para a amplitude do segundo harménico a uma

distancia z no meio nao-linear:
EQo) = Ey(w)tanh[4E (w)z] (8.24)

Usando a Eq. (8.24) e o principio da conservagdo da energia pode-se obter igualmente a seguinte solugao

para a evolugao da amplitude da onda incidente:
E(w) = Ey(w)sech[4E ,(0)z] (8.25)

Na Fig. 8.1 ilustra-se o comportamento das intensidades do segundo harménico, 1(20) o« E*(2w), e da
onda incidente, I(w) < E*(w).

Figura 8.1 — Evolucao das intensidades do segundo harménico (2w ) e da onda incidente (@ ).

8.4. Conjugacao optica da fase

A conjugacao optica da fase (COF) é um fendmeno nao-linear que deve o seu nome ao facto da parte
espacial do feixe resultante da interaccao ser igual ao complexo conjugado da parte espacial da onda incidente. Ou
seja, a onda gerada propaga-se no sentido contrario ao da onda original, reproduzindo exactamente a forma dessa
onda em cada posi¢do. Deste modo, pode-se considerar o meio nao-linear que produz a onda com fase conjugada
como um espelho, designado habitualmente por espelho de conjugacdo da fase (ECF). As caracteristicas deste

espelho sdo geralmente distintas dos espelhos ordinarios.
Considere-se o caso de uma onda plana:

E, = Eyexpli(wt —kz)}, (8.26)
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incidindo normalmente num espelho plano ordinario. Neste caso, a onda reflectida é também uma onda plana,

dada por:

E =E, exp{i(a)t +kz)}, (8.27)

Ou seja, do ponto de vista matematico, se se exceptuar o termo ¢, a onda reflectida é o complexo conjugado
da onda incidente e apresenta as caracteristicas da onda com fase conjugada referida antes.

Se a onda incidente no espelho plano ordinario nao for uma onda plana, ou se a incidéncia nao for normal,
a onda reflectida por esse espelho ja nao tem as caracteristicas da onda com fase conjugada. No caso de uma onda
esférica gerada num dado ponto, é possivel ter uma onda com fase conjugada, que converge para esse mesmo ponto,
apenas se se tiver um espelho concavo com uma curvatura exactamente igual a da frente de onda nele incidente.

Em contraste com os espelhos ordinarios, um ECF pode produzir uma onda com fase conjugada para uma
frente de onda incidente com forma arbitraria, sendo ainda capaz de responder de modo imediato as alteracoes
espaciais ou temporais dessa mesma frente de onda.

A COF pode ser entendida como holografia em tempo real. Como se viu no Capitulo 7, quando o holograma
¢ iluminado por uma onda de reconstrucao, £y, exactamente igual a onda de referéncia utilizada no registo desse
holograma, obtém-se duas imagens do objecto original: uma virtual e outra real. A imagem virtual localiza-se
exactamente na posicdo em que se encontrava o objecto original. Contudo, se o holograma for iluminado pela

onda de referéncia conjugada, E; , entdo a Eq. (7.12) para o campo difractado é substituida por:
(5,00 = €600} =€, Ey + iy Ep By + Eoy + Eg B+ Eg ) 529

O 1ltimo termo na Eq. (8.28), que é proporcional a ‘ E R‘ZE;, corresponde a onda objecto com fase
conjugada, E:) , que proporciona uma imagem real na propria posicao do objecto original.

No processo de COF os processos de registo e de reconstrucio holografica ocorrem em tempo real. A Fig.

8.2 mostra o ECF exposto as ondas de referéncia original e conjugada, £, e E; (que funcionam como ondas

de bombeamento), assim como as ondas objecto e imagem, E,, e E:) , respectivamente. Pode-se considerar que

as ondas E, e E, interferem e produzem um holograma em tempo real. A onda E; é difractada por este

holograma, produzindo a onda com fase conjugada E; . Esta técnica de produzir a COF é chamada mistura de

quatro ondas, dado que corresponde, de facto, a interferéncia de quatro ondas num meio nao-linear.

Eg*

\ l—— ———» E *

Meio nao-linear

\ *0

Ey

Figura 8.2 — Geometria para a conjugacao optica da fase por mistura de quatro ondas.

Quando uma frente de onda é distorcida, devido, por exemplo, as flutuacdes do indice de refraccio
existentes numa dada regido, a onda com fase conjugada, ao propagar-se na direc¢do oposta, encontra as mesmas
variacbes, mas de modo inverso. Como consequéncia, a onda com fase conjugada deixa essa regido com a frente

de onda original completamente restaurada.
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8.5. Efeitos nao-lineares em fibras
opticas

Os efeitos nao-lineares nas fibras 6pticas podem dividir-se de modo genérico em duas categorias. Uma dessas
categorias contempla as dispersoes estimuladas, nomeadamente a dispersdo Brillouin estimulada e a dispersdo
Raman estimulada, que resultam da interaccio entre os sinais opticos e as vibracoes actisticas ou moleculares do
material da fibra. Apesar de ambos os processos apresentarem um ganho exponencial, o seu impacto nos sistemas
de comunicacio € bastante diferente, como se vera a seguir. A segunda categoria de efeitos nao-lineares é devida a
modulacao do indice de refraccio da silica pelas variacdes da amplitude do sinal. Este facto da origem a fenémenos

como a auto-modulagdo da fase, a modulagdo cruzada da fase e a nistura de quatro ondas.

8.5.1. Dispersao Raman estimulada

A dispersao Raman estimulada (DRE) pode ser descrita como um processo envolvendo trés ondas: uma
onda de bombeamento (com frequéncia , ), uma onda de excitacio do material, correspondente aos seus modos
de vibragdo (com frequéncia @ ), e uma onda dispersa, ou onda de Stokes (com frequéncia @ ). A Fig. 8.3 ilustra
as trés ondas envolvidas neste processo. No caso de uma fibra dptica, o sentido de propagacio da onda de Stokes
pode ser igual ou oposto ao da onda de bombeamento. No que se segue considerar-se-a apenas a primeira situagao.

As poténcias de bombeamento (P, ) e de Stokes (P, ) envolvidas no processo de DRE numa fibra 6ptica

satisfazem as seguintes equacoes diferenciais de primeira ordem:

d g AP P,

b+abe — r’“S° bt S (8.29)
d Aef ﬂ'b
dpy _&hb (8.30)
& rash =

onde Aef, ¢ a drea efectivado modo, o, e @  sdo as constantes de atenuagdo na fibra para os comprimentos de onda
de bombeamento e de Stokes, respectivamente, e g_ € o coeficiente de ganho Raman, que esta relacionado com a

parte imaginéria da susceptibilidade de terceira ordem %, .

————m——_— -

@

5

Estados vibracionais

Estado fundamental

Figura 8.3 - Representacio das transicGes correspondentes a cada uma das ondas envolvidas no processo da DRE.
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Apesar de nao haver uma expressao teérica exacta para o coeficiente de ganho g na silica fundida, ele pode
ser obtido a partir das medidas do espectro da dispersao Raman espontanea ou a partir das medidas relativas a
interac¢do entre uma onda de bombeamento e uma onda de sinal. Uma caracteristica importante do coeficiente de
ganho Raman é a banda de frequéncias relativamente larga em que ele se estende (cerca de 40 THz), verificando-se
a existéncia de um pico dominante para um desvio de cerca de 13 THz como se mostra na Fig. 8.4. Contudo, o valor
maximo deste coeficiente na silica fundida é duas a trés ordens de grandeza inferior ao valor méaximo do coeficiente

de ganho Brillouin, referido na préxima secgao.

12
S 10 —co-polarizado
T Y A I P orthogonal
T 08+
E
S
= 05 o
e
£
0.4 o
&
S
S oz
=
0.0 4= T T — T e

0 5 10 15 20 25 30 35

diferenga de frequéncias bomba-sinal [Hz|

Figura 8.4 — Coeficiente de ganho normalizado para os casos de polarizacdo paralela (curva a cheio) ou ortogonal (curva a
ponteado) das ondas de bombeamento e de sinal. (Bromage, J. Lightwave Technol. 22, 79 (2004)).

Quando a atenuagido nao-linear da poténcia de bombeamento é pouco significativa, pode-se desprezar o
membro direito da Eq. (8.29), e obtendo-se entao a solucao:

P,(z) = P,(0)exp{-a,z} (8.31)

onde P, (0) é a poténcia de bombeamento lancada na fibra. Substituindo a Eq. (8.31) na Eq. (8.30) obtém-se o
seguinte resultado para a poténcia de Stokes a saida da fibra:

L
P5(L) = P5(0)expq g,b,(0) A—ef —a,L (8.32)
of

onde P (0) é o sinal injectado a entrada da fibrae L, ; é a distancia efectiva de interac¢do dada por
Lef = (8.33)

Na prética, quando apenas um feixe (o feixe de bombeamento) ¢ lancado na fibra, nao existe o sinal F;(0) e
o processo de DRE tem a sua origem na dispersdo Raman espontanea gerada ao longo da fibra. Os fotoes gerados
deste modo experimentam um ganho exponencial de acordo com a Eq. (8.32). A poténcia de bombeamento limiar
(P,,) corresponde a situacdo em que a poténcia de Stokes, originada a partir da dispersdo espontanea, atinge um

valor igual a poténcia de bombeamento a saida da fibra, sendo dada por:

N 16Aef

P =~
bl (8.34)
grLey"
Considerando os valores tipicos g = 6.7 x 10*m/W, Aef.= 50 um2 e Lef.z 20 km, tem-se P,,= 600 mW.

O valor obtido para a poténcia limiar da DRE é relativamente elevado e pode sugerir que este efeito nao

constitui qualquer limitacio para os sistemas de comunicacao por fibra éptica. Todavia, essas limitagdes podem
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fazer-se sentir, de facto, ao nivel dos sistemas de comunica¢ao com multiplos canais, dado que a poténcia total
neste caso pode exceder facilmente aquele limiar. Actualmente, o maior problema suscitado pela DRE tem que
ver com o acoplamento de canais nestes sistemas, em cujo processo se verifica a transferéncia de energia de um
dado canal para os canais com comprimento de onda superior.

A DRE pode ser utilizada na realizacdo de amplificadores de fibra éptica. Na Fig. 8.5 representa-se
esquematicamente um amplificador Raman de fibra éptica. Estes amplificadores caracterizam-se, nomeadamente,
por poderem operar em qualquer comprimento de onda e por apresentarem uma curva de ganho bastante larga
(> 5 THz), pelo que podem ser usados num sistema de comunica¢do com multiplos canais para amplificar
simultaneamente todos esses canais. A mesma caracteristica permite que esses amplificadores possam ser usados

para amplificar impulsos de luz ultracurtos.

@y

w
wb-—/\ !
—

H
Acoplador Fibra éptica
Filtro

Figura 8.5 — Representacio esquematica de um amplificador Raman de fibra dptica.

8.5.2. Dispersao Brillouin estimulada

O processo de dispersdo Brillouin estimulada (DBE) tem alguma semelhanga com o processo de DRE,
podendo também ser descrito como uma interaccao de trés ondas acopladas: a onda incidente, ou onda de
bombeamento, com frequéncia @, , uma onda actstica gerada no meio com frequéncia @, e uma onda dispersa,
ou onda de Stokes, com frequéncia @, . A onda de bombeamento, origina uma onda de pressdo no meio, que, por
sua vez, determina uma modulaco periddica do seu indice de refrac¢ao. Esta modulacao do indice de refracgao
provoca a dispersao da onda de bombeamento, dando assim origem a onda de Stokes. Na Fig. 8.6 representa-se

de modo esquematico a interacgdo entre as trés ondas envolvidas no processo da DBE.

. 'l{

Figura 8.6 - Representacao da interacgo entre as trés ondas envolvidas no processo da DBE.

As trés ondas envolvidas no processo da DBE satisfazem as leis de conservacao da energia e do momento,

pelo que as suas frequéncias e vectores de onda se relacionam na forma:
®, = 0, — 0 (8.35)

k, =k, —ks (8.36)
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onde os indices a, b e S se referem as ondas acustica, de bombeamento e de Stokes, respectivamente. A frequéncia

®, eovector de onda k, da onda acustica satisfazem a seguinte relacdo de dispersao:

w,=kyv,=2vk, sen(gj (8.37)

k> k=,

Stokes. Da Eq. (8.37) pode ver-se que a frequéncia da onda acustica é maxima quando ¢ = 7 rad, anulando-se

onde k, = , vV, é avelocidade da onda acustica e ¢ é o angulo entre as ondas de bombeamento e de

para ¢ =0 rad.
No caso de uma fibra 6ptica, a onda de Stokes gerada pelo efeito Brillouin propaga-se em sentido contrario
a onda de bombeamento. A frequéncia da onda de Stokes é inferior a da onda de bombeamento de um valor igual

a frequéncia acustica, dada a partir da Eq. (8.37), com ¢ = 7 rad, por:

[ = 2nv, (8.38)
a lh
onde 7 é o indice de refraccio e 4, o comprimento de onda da luz de bombeamento. Considerando os valores
tipicos v, =5.96 km/s e n = 1.45, tem-se f = 11.1 GHz para 4, = 1.55 um.
O coeficiente de ganho Brillouin, gz(Af’), é dado por:

2’ p Af2 8.39
gB(Af): 2 p127/ sz 5 ( )
cAyPov A 407+ Afp

onde Af = f, — f¢ — f, representa uma possivel dessintonia entre as frequéncias das ondas de bombeamento, de
Stokes e actistica, p,, € o coeficiente elasto-6ptico longitudinal e p, o valor médio da densidade. O factor y des-
creve o efeito da diferenca de polarizacGes entre as ondas de bombeamento e de Stokes. Quando as polarizacoes
das duas ondas s@o paralelas tem-se = 1 e quando sdo ortogonais tem-se = 0. Numa fibra longa e que ndo man-
tenha a polarizacao da luz, a direccao relativa dessas polarizacoes varia continuamente, tendo-se entao y ~ 0.5.

O coeficiente de ganho Brillouin dado pela Eq. (8.39) apresenta um perfil Lorentziano, com largura
total a meia altura Af} . Esta largura é proporcional a 1/ /li , pelo que o valor maximo do coeficiente de ganho é
independente do comprimento de onda da luz de bombeamento. Supondo que y =1, 4, =1pum e considerando
os valores tipicos para a silica fundida p , = 0.286, p, = 2.21 x 10° kg.m e, Af, = 55 MHz, tem-se para o valor
maximo do coeficiente de ganho Brillouin g, (0) =4 x 107" m/W.

A Eq. (8.39) é valida quando a luz de bombeamento apresenta uma largura espectral inferior a largura
da curva de ganho Af, . Quando esta condicdo nao ¢ satisfeita, e admitindo que a linha de emissdo do laser de
bombeamento tem um perfil Lorentziano com largura Af, , o espectro de ganho Brillouin é dado ainda pela Eq.

(8.39) mas com um valor de pico inferior, dado por:

o (o _ Afp (8.40)
g (0)—g3(0)rb+%

A poténcia maxima transportada pela onda de Stokes é dada por:

PL .
PS(0)=PS(L)exp{gB(0) 2 J —aL} (8.41)
ef

onde P éa poténcia de bombeamento, Ae/. é a area efectiva da sec¢do transversal do modo na fibra e Le/. éa
distancia efectiva de interac¢do, dada pela Eq. (8.33). Quando apenas uma onda (a onda de bombeamento) é

lancada na fibra, a onda de Stokes tem a sua origem na dispersao Brillouin espontanea e experimenta, depois,
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um ganho exponencial. Define-se um valor limiar para a poténcia de bombeamento, P, ,

adquire uma poténcia semelhante a essa poténcia de bombeamento a entrada da fibra. Pode-se mostrar que essa

tal que a onda de Stokes

poténcia limiar é dada aproximadamente pela expressao:

P =~ & (8.42)
" L,gy0)

Se se considerar os valores tipicos de uma fibra monomodo operando a 1.55 um, com Aef =40 um?, L, ,~20 km
e g,(0)= 4 x 10" m/W, tem-se P, =~ 1 mW. Este valor relativamente baixo para a poténcia limiar faz da DBE o
efeito nao-linear dominante em muitas situacoes. Isto verifica-se, por exemplo, no ambito dos sistemas 6pticos
coerentes de comunicaco, onde as fontes laser utilizadas apresentam larguras espectrais bastante inferiores a
largura da curva Brillouin ( Afy ).

Quando a poténcia transmitida numa fibra éptica excede o limiar Brillouin, uma parte significativa dessa
poténcia é convertida na radiacdo de Stokes e passa a propagar-se no sentido contrario, o que constitui um facto
duplamente indesejavel. Por um lado, a poténcia do sinal no receptor torna-se inferior a que seria recebida na
auséncia da dispersao Brillouin estimulada. Por outro lado, a onda de Stokes constitui uma realimentacao externa
para o laser emissor, podendo desestabilizar o seu funcionamento. Deste modo, é importante que a poténcia
lancada na fibra seja inferior ao limiar Brillouin. Uma técnica que permite elevar o valor desta poténcia limiar
consiste em aumentar a largura espectral efectiva da luz de bombeamento, Af, . Deste modo, o coeficiente de
ganho Brillouin é reduzido, de acordo com a Eq. (8.40).

No caso dos sistemas coerentes bidireccionais a DBE pode determinar o acoplamento de canais cuja separacio
seja proxima do desvio Brillouin (= 11 GHz a 1.55 um). Esse acoplamento traduz-se na amplificacdo de um canal a
custa da poténcia transportada por outro. Contudo, dada a largura relativamente reduzida da banda de frequéncias
em que o acoplamento pode acontecer (= 100 MHz), este efeito pode, na pratica, ser facilmente evitado.

Para além das limitacdes apontadas acima, a DBE pode ser aproveitada de modo positivo para realizar
amplificadores de fibra dptica. Estes amplificadores podem proporcionar ganhos elevados com poténcias de
bombeamento muito modestas, embora a largura da sua curva de ganho seja relativamente pequena. Esta tltima
caracteristica pode ser utilizada com vantagem, por exemplo, para conseguir a amplificacao selectiva de um dado

canal em sistemas de comunicac¢do com multiplos canais.

8.5.3. Auto-modulagao da fase

Mostra-se no problema PR 8.2 que se pode exprimir a dependéncia do indice de refrac¢ao das fibras 6pticas

relativamente a intensidade da onda 6ptica, na forma:
n=ny+n,l (8.43)

onde p, € a parte linear do indice de refracgdo, dada por:

=1+ 1, (8.44)

sendo ¥, asusceptibilidade linear. Por outro lado, 7, ¢ o coeficiente nao-linear, conhecido por coeficiente de Kerr, dado por:

n =3 X3 (8.45)
2 4 2
cEGNY

onde y; é asusceptibilidade de terceira ordem.
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A intensidade I na Eq. (8.43) pode ser escrita de modo aproximado na forma

P
I~——
y (8.46)

onde P ¢ a poténcia transportada por um modo da fibrae 4, a drea efectiva da secdo transversal desse modo.
No caso das fibras 6pticas, tem-se:
n,=146, n,=32x10% m*/W (8.47)

Se se considerar uma fibra monomodo com uma area efectiva 4, ;=30 um? e uma poténcia P = 100 mW, o

valor da parte ndo-linear do indice de refracgao é
P
n,——~6.4x10" (8.48)
4,

Apesar deste valor ser bastante pequeno, os seus efeitos tornam-se significativos devido aos longos

comprimentos de interac¢do (10 - 10000 km) proporcionados pelas fibras 6pticas.

A variagdo do indice de refraccao determina uma varia¢do da constante de propagacao do modo, que se

pode escrever aproximadamente na forma:

nw, @, n, P

,6’:7 “ n°+AT,» = =B+8, (8.49)
onde
5, - nywy (8.50)
C
e
B, = %ﬁp (8.51)

ef

correspondem a parte linear e nao-linear da constante de propagacao, respectivamente. Deste modo, uma onda

incidente na forma:

E(z=0,t)= Aexplimt} (8.52)
assume o seguinte aspecto depois de percorrer uma distancia z:

E(z,t) = Aexpli(oyt — ﬂz)}

wyny P

= Aexpyi| oyt — Bz - z (8.53)

ef

No caso de a onda incidente corresponder a um impulso com uma poténcia P() dependente do tempo, o
impulso a saida é trinado. Este fenémeno é chamado de auto-modulag¢do da fase (AMF), dado que a variacao da

poténcia do impulso com o tempo determina a modulacdo da sua prépria fase.
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A frequéncia instantanea dentro do impulso pode ser apresentada na forma:

_@oynyz dP (8.54)
cAe/ dt

o(t) = o,

A Eq. (8.54) mostra que na parte da frente do impulso, em que se tem dP/dt > 0, a frequéncia instantanea
¢ inferior a o, enquanto que, na parte de tras do impulso, em que se tem dP/ dt < 0, essa frequéncia é superior
a o, . A frequéncia central do impulso, », mantém-se inalterada. Deste modo, a AMF imp&e um trinado ao

impulso, como se representa na Fig. 8.7.

(@

Fibra optica

Figura 8.7 - Representacao esquematica do trinado imposto ao impulso pela auto-modulagio da fase.

No regime de dispersdo normal, os trinados devidos a dispersao e 8 AMF actuam do mesmo modo. Como
consequeéncia, o trinado global do impulso tende a acentuar-se para poténcias mais elevadas do impulso, situagao
em que a nio-linearidade da fibra mais se faz sentir. Entretanto, no regime de dispersao anémala, os trinados
devidos aos dois efeitos actuam do modo oposto, tendendo a compensar-se. Se a compensacao for total, o impulso

mantém a sua forma constante durante a propagacao, sendo entao designado por solitao.

8.5.4. Solitdes em fibras Opticas

O campo eléctrico associado a uma sequéncia de impulses que se propagam numa fibra éptica alinhada

segundo o eixo dos zz pode ser escrito na forma:

E= %(F(r, AU (z,1)e" P c.c.) (8.55)

onde Uf(z,#) descreve a amplitude complexa da envolvente do campo na posi¢io z, F'(r,¢) descreve a distribui¢io

transversal do modo fundamental da fibrae [, € a constante de propagacio do modo na frequéncia da portadora, w,.

A tnica grandeza que varia durante a propagacio é a amplitude U(z,¢). Dado que a componentes espectrais
diferentes do campo dptico correspondem constantes de propagacio ligeiramente diferentes, torna-se conveniente

trabalhar no dominio das frequéncias. A evolugdo de uma dada componente espectral U (z,w) é dada por:
U(z,w) = U(0,w)explif(@)z —ifyz] (8.56)

onde U (0,) ¢é a transformada de Fourier do sinal & entrada da fibra U(z=0,¢) e S(®) é a constante de
propagacao, que pode ser escrita como a soma de uma parte linear, f5, , e de uma parte ndo-linear, f,, , como se

indica nas Egs. (8.49)-(8.51).

NL’
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Pode-se expandir f, () numa série de Taylor em torno da frequéncia w , como se fez no Capitulo 5 — ver
as Eq.s (5.32)-(5.34). Retendo nessa expansao apenas os termos até a segunda ordem em (o — w,), substituindo na
Eq. (8.56), calculando a derivada 0U / 0z e convertendo a equacdo resultante para o dominio dos tempos, usando

a transformada de Fourier e a rela¢do
Aw<sil (8.57)
obtém-se a equacao

o 12 1 o?

{& véJU SP U+ B U=0 (8.58)

Normalizando a amplitude U de tal modo que o quadrado do seu médulo seja igual a poténcia, P = ‘U : ,

tem-se S, = y‘U ?, onde

wpn
= TZ: (8.59)

é o chamado parametro nao-linear da fibra.
Considerando um referencial que se move com a velocidade de grupo e usando a nova variavel temporal

r=t-=2
=t-— (8.60)
Vg

a Eq. (8.58) pode ser escrita na forma:

U 17U

5P

+7ufu=0 (8.61)

A Eq. (8.61) é conhecida como a equagdo ndao-linear de Schrédinger (ENLS) e descreve a propagacio de
impulsos num fibra 6ptica sob os efeitos da dispersao da velocidade de grupo e da nao-linearidade da fibra.

Pode-se considerar uma amplitude normalizada Q dada por:

U(z,7) = /R 0(z,7) (8.62)

onde F, é a poténcia de pico do impulso na entrada da fibra. Usando as Egs. (8.61) e (8.62), verifica-se que
0O(z,7) satisfaz a equacdo:

@—lﬂz =+ )P, ‘Q‘ 0=0 (8.63)
Pode-se definir uma distancia nao-linear, L L do modo

L = L (8.64)
R '

Pode-se definir ignalmente uma distancia de dispersao, L, naforma:

o

D= @ (8.65)
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onde 7, ¢ a largura do impulso. L, e L, correspondem a distancias de propagagdo ao fim das quais os fené-
menos nao-lineares e dispersivos, respectivamente, se tornam relevantes na evolucao do impulso.
Usando a distancia Z, normalizada pela distancia de dispersdo L, , e a variavel temporal 7, normalizada

pela largura do impulso 7, a Eq. (8.63) fica:

00 10°0 ., 2
i TELN =0 (8.66)
Yoz 2ot oo
onde
N2=Lo _ YRty (8.67)
LNL |ﬁ2|

No segundo termo da Eq. (8.66), o sinal mais corresponde ao caso da dispersao anémala ( 8, < (), enquanto

que o sinal menos corresponde a dispersdo normal ( £, > 0).
No regime de dispersao anémala e considerando N=1, a Eq. (8.66) possui uma solugéo na forma:
O(Z,T) = sech(T)exp(iZ / 2) (8.68)

A solucdo anterior representa o chamado solitdo brilhante fundamental, que se caracteriza pelo facto de a sua
forma — representada na Fig. 8.8 — se manter constante durante a propagacao. Contudo, nesse mesmo regime, a Eq.
(8.66) admite igualmente solug¢des correspondentes a solitdes de ordem superior, correspondentes a valores inteiros
N>1, cujas formas variam periodicamente com a distancia de propagacdo. O valor de N indica a ordem do solitao.

Na Fig. 8.9 mostra-se a evolugao do solitao de segunda ordem, obtida a partir de um impulso inicial dado por:

0(0,T) = 2sech(T) (8.69)

191*

-
g T

Figura 8.8 — Representacdo da intensidade do solitdo brilhante fundamental.
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Figura 8.9 — Evolucdo do solitao de segunda ordem, governado pela Eq. (8.66).
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No regime de dispersao normal, a Eq. (8.66), apresenta igualmente uma solucao do tipo solitao, dada por:

O(Z,T) = tanh(Texp(iZ) (8.70)

Esta solucao, conhecida por solitdo escuro, representa um impulso de intensidade reduzida num fundo de

intensidade constante e mais elevada.
O facto de os solitdes brilhantes fundamentais poderem propagar-se nas fibras épticas sem se deformarem

apresenta potencialidades enormes no dominio do processamento todo éptico do sinal e dos sistemas de

comunicacao de elevado débito.

8.6. Problemas resolvidos

PR 8.1. Assumindo um meio com simetria de inversao, em que a nao-linearidade de terceira ordem é dominante,

mostre que a polarizacdo do material se pode escrever na forma:

%

Considere para o efeito que as condicoes de ajuste de fase para a geracdo do terceiro harmdnico nao sao

m,3 0|5

PZEO(I +zﬂ(

satisfeitas.
Resolucio
Um meio com simetria de inversao apresenta uma susceptibilidade de segunda ordem nula. Por outro lado,
a ndo-linearidade de terceira ordem pode apresentar-se na forma:
3 3
P =g,y EEE ey
Considere-se o campo eléctrico de uma onda plana, dado por:
1z —iot
E= 5 (E(z)e + c.c.) (2
onde c.c. indica o complexo conjugado. Substituindo a Eq. (2) na Eq. (1), tem-se
3) O p it | £* ot L 6y (p3 -3 A2 (A it
Py =gy \Ee™ +E"e =g 60Z E’e™” tec. +3‘E‘ Ee' +cc. (3)

Se as condicoes de ajuste de fase para a geragdo do terceiro harmoénico nao forem satisfeitas, tem-se que o

primeiro termo no membro direito da Eq. (3) pode ser desprezado, tendo-se entao:

3 .2
Py ~ 250;((3)‘E‘ E (4)
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Tendo em consideracao este resultado e a Eq (8.3), a polarizacdo do material vem dada por:

]E ©

~|2

P=¢gyyE +P]$2) = 80(}((1) +%;((3) E

PR 8.2. Usando o resultado obtido no problema PR 8.1, mostre que o indice de refraccao do material varia com a

intensidade, 7, como se apresenta na Eq. (8.31).

Resolugao
A intensidade da onda plana é dada pelo mddulo do valor médio do vector de Poynting, dado pela Eq. (1.58):

2

A

E

1
I =—ceyn
5 C&h

¢

onde n, € a parte linear do indice de refraccio. Substituindo a equacao anterior na Eq. (5) do problema PR 8.1,

tem-se que a polarizagio se pode escrever na forma:

)
Posy| sV 42X [ |E (2)
2 cgyny

Por outro lado, a polarizacdo e o indice de refraccdo de um meio relacionam-se genericamente na forma:
2
P=gy(n"-1)E 3)

Comparando as Eq.s (2) e (3), pode-se obter o seguinte resultado para o indice de refraccao

(3)
n= 1+Z(1)+§7}( I =ny+n,l (4)
2 cgyn

onde

no =1+ 7Y ©)

¢ a parte linear do indice de refracgao e

3 1(3)

2 2
4 ceyngy

(6)

n
é o coeficiente da parte nao linear do indice de refracgdo, também conhecido como coeficiente de Kerr.
PR 8.8.Considere que as duas ondas incidentes num meio nao-linear (ondas de bombeamento), com frequéncias
®, e w, , mantém a sua amplitude constante. Suponha que o meio nio-linear se situa na regido z>0 e que a
amplitude da onda com frequéncia soma @, =® + w, € nula no plano z = 0. Obtenha uma expressdo para a

intensidade da onda com a frequéncia @, e comente esse resultado para os casos Ak #0 e Ak =0.

Resolucao

Assumindo as condigdes do problema, pode-se integrar a Eq. (8.17) e obter o resultado:

E, = Y ﬂdElEz explidkz}—1 O
2 Vg iAk
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A intensidade da onda com frequéncia w; é dada por:

2 sen?[Akz /2]

(Ak)

A Eq. (2) mostra que, quando se consideram constantes as amplitudes das ondas de bombeamento,

13(z)ocE3(z)E3*(z)=w§gﬁd2\151\2\52\ . Ak#0 2)
3

a variacdo da intensidade da onda com frequéncia soma tem a forma da funcao seno quadrado. Note-se que
0 maximo da intensidade é inversamente proporcional ao quadrado de Ak. Para Ak = 0, essa intensidade é
proporcional ao quadrado da distancia, resultado que é valido apenas para valores suficientemente pequenos de z.
De facto, para valores elevados de z as ondas incidentes £, e £, ndo podem ser consideradas constantes, impondo-

-se nesse caso uma resoluc¢do mais rigorosa do sistema de equagoes diferenciais (8.15)-(8.17).

PR 8.4. Considere um sinal 6ptico com frequéncia w, e uma onda de bombeamento suficientemente intensa
com frequéncia m, > m, que se propagam num meio ndo-linear. Partindo do sistema de equagoes (8.15)-(8.17) e
assumindo que a onda de bombeamento tem uma amplitude real e constante £, (z) = E, (0), mostre que a onda de
sinal é amplificada e que se verifica o aparecimento de uma terceira onda com frequéncia @, = @, ~®, . Assuma
a condicdo de ajuste de fase Ak=k,—k,—k =0 e ¢ = &, =¢ . Esboce um gréifico para a evolucio da intensi-

dade das ondas com frequéncias w, e o, .

Resolucao

Nas circunstancias indicadas, pode-se escrever a Eq. (8.15) e o conjugado da Eq. (8.16) na forma:

%1 ia)l M
—=——,|—dE;E, * 1)
V24 2 Ve 72

2 :& ﬁdE:;El (2)
& 2 Ve

De acordo com as condic¢oes do problema, as Eq.s (1) e (2) devem ser resolvidas admitindo a existéncia de

um sinal £, (0) # 0, enquanto que se tem £, (0) = 0. Obtém-se entdo as solugdes:

E,(2) = E;(0) cosh(Kz) )
e
E,*(z) =i |“2E,(0)senh(Kz) )
,
onde
1 |oou
K =— [—25dE
3 3 (5)
Na Fig. 8.10 mostra-se a evolucao das intensidades normalizadas
_
I, = 10 =cosh’(Kz) (6)
110
e
_ o L(2) 2
I, =— =senh”(Kz)
>, I, <
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2 2 e . A .
onde /(z) oc £/(z) e I ,oc E,(0) . Observa-se da figura que, numa fase inicial, enquanto a onda com frequéncia w,
¢ gerada, a amplificacdo do sinal com frequéncia », ¢ modesta. Contudo, essa amplificacdo torna-se significativa
numa fase posterior. Uma caracteristica inica do amplificador 6ptico paramétrico reside na possibilidade que ele

oferece de gerar luz com frequéncias que néo correspondem a qualquer transi¢do atémica.

"JI.Z

N"

Figura 8.10 - Evolugdo das intensidades normalizadas do sinal ( /7, ) e da onda gerada ( 7, ) num amplificador éptico paramétrico.

PR 8.5. Explique o significado de desprezar o membro direito da Eq. (8.29) e diga em que condigdes isso é
aceitavel. Assumindo essa aproximagao, confirme os resultados dados pelas Eq.s (8.32) e (8.33) para a poténcia
da onda de Stokes e para a distancia efectiva de interaccao, respectivamente, no processo DRE e obtenha uma

expressao para o ganho nao saturado de um amplificador Raman.

Resolugao
Desprezar o membro direito da Eq. (8.29) equivale a ignorar a perda de poténcia da onda de bombeamento
determinada pela interac¢do nao-linear com a onda de Stokes. Esta aproximacio é razoavel se a poténcia desta

onda for relativamente baixa. Em tal caso, a Eq. (8.29) reduz-se a
dpP,
——=-o,h, Y]
A integracdo da Eq. (1) permite obter o resultado

P,(z) = P,(0)exp{-a,z} 2

onde P, (0) éapoténcia de bombeamento lancada na fibra. Substituindo a Eq. (2) na Eq. (8.30) e rearranjando, tem-se

P A,

il = {— og + Er B, (0)exp{- abz}} dz 3)
of

Integrando ambos os membros da Eq. (3) entre z=0 e z=L, obtém-se o seguinte resultado para a poténcia a
saida da fibra:

L.
Py(L) = Py(0) exp{g,%(O)j—asL} ()
ef

onde P (0) é o sinal injectado a entrada da fibra e

L =—% (5)

representa a distancia efectiva de interaccao. O ganho do amplificador Raman é dado por
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B(L)

L,
=— S¥7 - P(0)—L 6
Py (0)exp(—agL) P &5 )A ©

ef

O resultado anterior mostra que o ganho, em dBs, aumenta linearmente com a poténcia de bombeamento
lancada na entrada da fibra.

PR 8.6.Discuta algumas possibilidades para se ter uma fibra altamente nao-linear (parametro nao-linear elevado).

Resolugao
De acordo com a Eq.(8.59), o parametro nao-linear da fibra é dado por

— B
cd,, Y]

Desta expressdo verifica-se que existem duas técnicas para aumentar a ndo-linearidade da fibra: i) reduzir
a area efectiva do modo, 4 o > O ii) aumentar o coeficiente de Kerr do material de que a fibra é feita.

A téenica i) pode ser implementada reduzindo o didmetro do nicleo e aumentando a diferenca entre os
indices de refraccdo do nucleo e da bainha. Quanto a este tltimo aspecto, a situacdo limite ocorre quando o
indice de refrac¢ao da bainha é igual a 1, tendo-se entdo que o nucleo estd rodeado por ar. Esta situagao acontece
realmente nas chamadas fibras adelgacadas e, de uma maneira aproximada, nas chamadas fibras épticas
microestruturadas cuja bainha tenha uma elevada percentagem de ar.

Relativamente a técnica ii), pode-se aumentar o coeficiente de Kerr dopando adequadamente a silica
constituinte do nucleo da fibra, nomeadamente usando germanio. Contudo, esse aumento pode ser muito mais
significativo usando alguns tipos de vidro com uma nio-linearidade superior a da silica. Conjugando esta técnica

com a técnica i), pode-se conseguir uma aumento do parametro ndo-linear da fibra de varias ordens de grandeza.

PR 8.7 Calcule a poténcia que deve ser usada para gerar um solitdo fundamental de largura 7, = 6 ps numa fibra
que apresenta uma dispersao da velocidade de grupo £, = —1 ps’/km e um parametro nao-linear y=3 W™'/km.
Explique por que razdo os solitdes fundamentais sdo preferiveis aos solitdes de ordem superior no ambito dos

sistemas de comunicaco por fibra 6ptica.

Resolugao

De acordo com a Eq. (8.67) a poténcia de pico de um solitao numa fibra dptica é dada por:

2
P N?|B,| )

2
"o
Considerando o caso de um impulso com duracéo {, = 6 ps propagando-se numa fibra com uma dispersio
da velocidade de grupo S, = —1ps’/km e um pardmetro ndo linear y = 3W™'/km, tem-se que a poéncia de pico

necessaria para a formagio de um solitdo fundamental (N = 1) é P ~ 10 mW.

A poténcia de pico necessaria para formar um solitdo de ordem /N é N? vezes superior a poténcia de pico de
um solitdo fundamental. Por outro lado, um solitdo de ordem superior varia periodicamente o seu perfil durante
a propagacdo, enquanto um solitao fundamental mantém o seu perfil estacionario. Este facto, conjuntamente
com a poténcia mais baixa para a sua formacao, faz com que o solitao fundamental seja preferivel no ambito dos

sistemas de comunicagao por fibra 6ptica.
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PR 8.8. Partindo da Eq. (8.61) e desprezando os efeitos da dispersao e da nao-linearidade da fibra, mostre que um
impulso se propaga com a velocidade de grupo v, mantendo inalterada a sua forma. Mostre ainda que a energia

do impulso se propaga com a mesma velocidade de grupo.

Resolucio
Desprezando os efeitos da dispersao e da ndo-linearidade da fibra, a Eq. (8.61) reduz-se a forma

6U(Z,Z‘) -0 (1)
0z
ou
I 1U_, 2)
174 Vg a

A Eq. (1) tem como solugdo geral:
U=Uyr)=Uyt—z/v,) (3)

onde U, representa o valor inicial (z = 0) de U. Conclui-se da Eq. (3) que, na auséncia de dispersio e de nio-

-linearidade, o impulso se propaga sem alteracao do seu perfil com uma velocidade de grupo v,

Multiplicando ambos os membros da Eq. (2) por U * e o complexo conjugado da mesma equagao por U e

adicionando as duas equacdes resultantes, tem-se

I ()
& v, a

g

2 .
, também se propaga com a

Conclui-se, assim, que a energia do impulso, que é proporcional a ‘U

velocidade de grupo v,

PR 8.9. Partindo da Eq. (8.61) desprezando o termo nao-linear, mostre que a dispersao cromatica determina uma
aumento da largura do impulso durante a propagacgio. Considere para o efeito o caso de um impulso Gaussiano,

descrito pela Eq. (5.36).

Resolucao
Desprezando o termo nao-linear, tem-se que a Eq. (8.61) se reduz a forma:
U 1,0U

2P0 ®

Usando método da separacdo de variaveis, pode-se obter a seguinte solucdo geral:

1
7ﬂ2wzszz )

U(z,y7) = f; u(o, a))e{z dw (2)

onde U(0,w) representa o espectro do impulso na entrada da fibra. No caso de um impulso Gaussiano, esse

espectro é dado pela Eq. (1) do problema PR 5.8. A Eq. (2) acima é semelhante a Eq. (2) do mesmo problema, no

qual foi demonstrado que o impulso se alarga e adquire trinado durante a sua propagacao.
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PR 8.10. Desprezando o termo de dispersao na Eq. (8.61), mostre que
i) 0 quadrado do médulo da amplitude da envolvente mantém o seu perfil durante a propagacio e

ii) a ndo-linearidade da fibra determina uma modulacao da fase que é proporcional a intensidade do impulso.

Resolucio

Desprezando o segundo termo na Eq. (8.61) tem-se
au

i uPU =0 W
124

Multiplicando ambos os membros da Eq. (1) por U * e o complexo conjugado da mesma equacao por U e

subtraindo as duas equagdes resultantes, tem-se

2
qul” _ 0 )

0z

A Eq. (2) tem como solucao geral:

U = f(0)=ft-2/v,) (3

A Eq. (3) mostra que, desprezando a dispersao, o quadrado do médulo da amplitude mantém o seu perfil

durante a propagacdo. Com base neste resultado, a solucao da Eq. (2) pode ser escrita na forma:
U(z,7) =Uy(r)e"=? (4)
onde U,y (7) e #(z,7) sdo fungdes reais. Das Eq.s (1) e (4) obtém-se
#(z,0) =AU 2 (5)
Este resultado mostra que a ndo-linearidade da fibra determina uma modulagdo da fase do impulso que é

directamente proporcional a intensidade desse impulso e a distancia de propagacao. Este fenémeno é conhecido

como auto-modulagdo da fase e foi descrito na sec¢do 8.5.3.

8.10. Problemas propostos

PP 8.1 Partindo das Eq.s (1.9), (8.3) e (8.6)-(8.8) obtenha a equacgdo de onda para o o campo eléctrico num meio
nao-linear, dada pela Eq. (8.9).

PP 8.2. Partindo da Eq. (8.9) e usando as Eq.s (8.11)-(8.14:), obtenha o sistema de equacoes (8.15)-8.17).

PP 8.8. Partindo das Eq.s (8.15)-(8.17), obtenha a relacdo de Manley-Rowe, dada pela Eq. (8.19).

230



PP 8.4. a) Verifique, por substituicao, que a Eq. (8.24) é realmente solucao da Eq. (8.23). b) Usando a Eq. (8.24)
e o principio da conservacao da energia, mostre que a evolugiao da amplitude da onda incidente é dada pela Eq.
(8.25).

PP 8.5. Usando as Eq.s (8.15) e (8.17) para a geracao do segundo harménico, i.e. £, =E,, @, =0, =@, @3 =20
e Ak =0, mostre que a soma das intensidades das ondas incidente e do segundo harmonico é constante ao longo

do percurso.

PP 8.6. O feixe de um laser (A = 700 nm), apresenta uma intensidade I =100 MWem ? e incide num cristal
de fosfato dihidrogenado de potassio (KDP). Determine o comprimento que devera ter esse cristal para que
a intensidade do segundo harménico chegue a metade daquele valor (/, = I/ 2). Considere que o indice de
refraccio do cristal é 7 = 1.51, quesetem Ak =0 e A=+/pt/edw=12x102V",

PP 8.7. Descreva a origem fisica dos fenémenos da dispersdao Brillouin estimulada e da dispersao Raman

estimulada nas fibras épticas, referindo as semelhancas e as diferencas entre eles.

PP8.8.

a) Descreva o fendmeno da auto-modulacdo da fase nas fibras dpticas, referindo a sua origem fisica.

b) Mostre que o referido fendmeno determina um alargamento espectral dos impulsos que se propagam
nas fibras 6pticas.

¢) Descreva os efeitos que podem resultar da accao combinada da auto-modulacao da fase e da dispersao

cromatica da fibra éptica.

PP 8.9. Mostre que, tanto o solitdo brilhante, dado pela Eq. (8.68), como o solitao escuro, dado pela Eq. (8.70),
sao solucoes da Eq. (8.66).

PP 8.10. Mostre que a grandeza
2
1= [lof*ar

é invariante no tempo de acordo com a equacdo nao-linear de Schrédinger dada pela Eq. (8.66). Assuma que a

solucdo Q satisfaz as condi¢Ges fronteira:

lim O(Z,T)=0
T—+x0

fim 2% _

T—+0

0

231



8.11.Referéncias bibliograficas

=

G. P. Agrawal, Nonlinear Fiber Optics, 5 Ed. Academic Press, New York, 2012.

M. F. Ferreira, Nonlinear Effects in Optical Fibers, John Wiley & Sons, 2011.

R. W. Boyd, Nonlinear Optics, 4* Ed., Academic Press, Boston, 2020.

P. N. Butcher e D. Cotter, The Elements of Nonlinear Optics, Cambridge University Press, Cambridge, 2008.
P. L. Mills, Nonlinear Optics, Springer-Verlag, Berlin, Heidelberg, 1998.

IS

Y. R. Shen, Principles of Nonlinear Optics, John Wiley & Sons, 2002.

232



