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Prefácio
 
O propósito deste livro é o de apresentar uma introdução aos conceitos fundamentais da óptica e a algumas 

das suas aplicações. Com a sua publicação, pretende-se contribuir para uma maior divulgação deste domínio no 
espaço de língua portuguesa e tornar, possivelmente, mais fácil o seu estudo por alunos de física ou de outros 
cursos de ciências e de engenharia. Efectivamente, atendendo a que a área de influência da óptica tem vindo a 
extravasar os limites da física e a alargar-se progressivamente a outras áreas do saber, nomeadamente à química, 
à biologia, à engenharia e à medicina, pensamos que este livro poderá ser útil como texto de referência, não só em 
algumas disciplinas dos cursos de física, mas também em alguns programas de formação desenvolvidos nestas 
últimas áreas. Poderá também ser um instrumento útil para profissionais com uma formação de base diversa e 
que desejem iniciar o estudo desta área.

	 A forma como se apresenta este texto corresponde àquela que, na opinião do autor, mais interessa aos 
alunos, contribuindo para o sucesso no seu aproveitamento. De facto, o texto tem uma feição eminentemente 
teórico-prática: para cada um dos temas, apresenta-se primeiro o essencial da teoria, seguindo-se um conjunto de 
problemas completamente resolvidos. O objectivo destes problemas - num total de cem - é o de proporcionar uma 
melhor compreensão e um maior domínio da teoria apresentada antes. No final de cada capítulo são propostos 
outros problemas, também em número de cem, que se destinam a ser resolvidos pelos próprios alunos. Alguns 
destes problemas poderão ser seleccionados para uma discussão aprofundada no âmbito das aulas teórico-
práticas das unidades curriculares em causa.

							                    Universidade de Aveiro, Março de 2022
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Capítulo 1

A NATUREZA DA LUZ

Desde muito cedo os homens interrogaram-se sobre a natureza da luz e elaboraram diferentes teorias para 
descrever os fenómenos ópticos. De facto, torna-se importante compreender a verdadeira natureza da luz, dado 
que ela representa um dos ingredientes básicos da vida sobre a Terra. Considere-se, por exemplo, a importância 
da luz solar para as plantas, que a convertem em energia química através do processo de fotossíntese. Por outro 
lado, a luz é o principal meio através do qual podemos transmitir e receber informação a partir dos seres que nos 
rodeiam ou que se encontram dispersos pelo Universo.

Neste capítulo começaremos por descrever, de um modo sumário, algumas ocorrências e ideias que se 
foram sucedendo ao longo dos séculos sobre a natureza da luz. Apresentaremos a seguir o modelo baseado na 
teoria electromagnética, que se revela capaz de descrever uma grande parte dos fenómenos ópticos observados no 
dia-a-dia.	

1.1 Modelos para a luz – Uma 
perspectiva histórica 

Vários filósofos da Grécia Antiga, entre os quais Pitágoras, Demócrito, Empédocles, Platão e Aristóteles, 
desenvolveram diversas teorias acerca da natureza da luz. A teoria de Aristóteles, em particular, era muito 
semelhante à teoria do éter que viria a ser desenvolvida no século XIX. Contudo, o trabalho sobre óptica mais 
antigo de que se tem conhecimento é o livro Optics, escrito por Euclides (300 a.C.), no qual se descreve a propagação 
rectilínea da luz, assim como a lei da reflexão. Seguindo o ensinamento de Platão, Euclides supunha que os “raios” 
luminosos tinham a sua origem nos olhos do observador e se dirigiam para os objectos contemplados. 

Ainda no século I a.C., Hero de Alexandria defendeu que a luz, ao viajar entre dois pontos, segue sempre 
o caminho mais curto. No caso de um meio homogéneo, esse caminho corresponde a uma trajectória rectilínea. 
Usando este princípio, Hero conseguiu demonstrar geometricamente a lei da reflexão. O princípio do caminho 
mais curto veio a revelar-se basicamente correcto, apesar de o seu autor admitir igualmente que os raios luminosos 
provinham dos olhos do observador e que a velocidade de propagação da luz era infinita. 

A refracção da luz foi estudada por Cleomedes (50 d. C.) e, mais tarde, por Cláudio Ptolomeu (100-170), de 
Alexandria, cujas observações ficaram registadas no seu livro Optics. Ptolomeu realizou uma série de medidas bastante 
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rigorosas dos ângulos de incidência  (θi) e de refracção (θt) para vários meios. A partir dessas medidas, chegou a uma 
relação empírica entre os dois ângulos, dada por θt = aθi ˗ bθi

2 , onde a e b são constantes que dependem dos meios que 
formam a interface. É interessante notar que, apesar desta expressão ser válida apenas para ângulos de incidência 
bastante pequenos, ela permaneceu inalterada durante cerca de 1500 anos!

A queda do Império Romano do Ocidente, em 475 d. C., marca o início de um período durante o qual a 
actividade científica na Europa praticamente estagnou. Entretanto, a expansão do islamismo fez deslocar o centro 
da actividade intelectual para o mundo árabe. É neste contexto que surge, em Bagdad, a figura de Alhazen (965-
-1039), que escreveu uma colecção de sete livros sobre óptica. Entre outros assuntos, Alhazen elaborou a lei da 
reflexão, estudou as características dos espelhos esféricos e parabólicos e descreveu em detalhe o funcionamento 
do olho humano. Na sua concepção, os raios luminosos não tinham origem no olho, mas nas fontes que 
iluminavam os objectos, a partir dos quais a luz se dirigia para o olho. Alhazen defendeu igualmente que a luz se 
propagava com uma velocidade finita, ainda que muito elevada, e que essa velocidade deveria ser inferior num 
meio opticamente mais denso.

 O trabalho de Alhazen foi traduzido para latim e acabou por ter uma grande influência nos estudos de 
óptica do Bispo Robert Grosseteste (1175-1253) e do matemático polaco Vitelo. Estes estudos foram continuados 
por Roger Bacon (1215-1294), que terá sido o primeiro a propor o uso de lentes para melhorar a visão e a combinar 
várias lentes para formar um telescópio. Mais tarde, apareceu o contributo de Leonardo da Vinci (1452-1519), que 
descreveu o funcionamento da chamada camera obscura. De notar, contudo, que este dispositivo havia sido já 
discutido, cerca de 500 anos antes, por Alhazen.

Usando um telescópio feito por si mesmo, Galileu Galilei (1564-1642) descobriu as luas de Júpiter e muitas 
outras maravilhas do espaço celeste. Após ter verificado as descobertas de Galileu, Johannes Kepler (1571-1630)  
publicou, em 1609, o seu livro Dioptrice,  no qual se encontram sumariados muitos dos resultados obtidos até 
então. Entre outros assuntos, este livro apresenta a teoria para as combinações de lentes e descreve o fenómeno 
da refracção usando uma aproximação de ângulos pequenos. 

A lei da refracção acabou por ser definitivamente descoberta em 1621 por Willebrord Snell (1591-1626), em 
Leyden. Contudo, o trabalho de Snell era, essencialmente, de natureza empírica e não foi publicado de imediato. 
René Descartes (1596-1650), que desconhecia aparentemente o trabalho de Snell, publicou, em 1637, a obra La 

Dioptrique, apresentando pela primeira vez a lei da refracção tal como hoje a conhecemos.
Pierre de Fermat (1601-1665) demonstrou em 1657 a lei da reflexão com base no seu princípio do tempo 

mínimo. Segundo este princípio, que é uma evolução da ideia do caminho mais curto defendida por Hero, a luz 
propaga-se de um ponto para outro seguindo um trajecto que minimiza o tempo de percurso, mesmo que para 
tal ela tenha de desviar-se da recta que passa por esses pontos. Com base no mesmo princípio, e introduzindo o 
conceito de resistência óptica do meio, Fermat obteve igualmente a lei da refracção.

Tanto Descartes como Fermat admitiam que a luz era constituída por uma corrente de partículas. Contudo, 
o principal arquitecto desta teoria corpuscular foi Isaac Newton (1642-1727), que explicou nessa base as principais 
características da luz observadas experimentalmente, nomeadamente as leis da reflexão e da refracção. Em 1704 
ele publicou o livro Opticks, que se tornou durante bastante tempo numa obra de referência para a descrição das 
características da luz. Nesta obra, Newton descreveu uma série de experiências relativas à refracção e ao domínio 
actualmente designado por interferência. Uma dessas experiências ilustrava o fenómeno da dispersão da luz do 
sol num prisma. Newton verificou que o fenómeno da cor era uma característica intrínseca da luz e que a luz 
branca proveniente do sol era o resultado da combinação de raios de todas as cores. Esses raios eram entendidos 
como correntes de partículas que se moveriam através de um meio omnipresente, o éter. 

Em oposição à teoria corpuscular, havia também quem defendesse, já no século XVII, teorias ondulatórias 
para a luz. Entre os defensores destas teorias encontra-se Robert Hooke (1635-1703), que chegou a afrontar 
directamente Newton na Royal Society of London. Entre outros trabalhos, Hooke descreveu os padrões de 
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interferência com várias cores que ocorrem em filmes dieléctricos delgados. Tendo por base a hipótese do meio 
etéreo, propôs uma analogia entre as ondas luminosas e as ondas que se formam na água. 

O físico holandês, Christian Huygens (1629-1695) pode ser considerado o principal arquitecto do modelo 
ondulatório para a luz, com base no qual explicou as leis da reflexão e da refracção. Esse modelo ondulatório foi 
exposto na obra Traité de la Lumiére, publicada em 1690, na qual foi enunciado pela primeira vez o que viria a 
ser conhecido por princípio de Huygens: cada ponto de uma frente de onda primária constitui uma fonte de ondas 

esféricas elementares, a sobreposição das quais permite obter a frente de onda primária num instante posterior. Na 
Fig. 1.1 ilustra-se a utilização do princípio de Huygens para descrever a propagação de uma onda esférica.

Figura 1.1 – Ilustração do princípio de Huygens para uma onda esférica.

Por várias razões, a teoria ondulatória da luz acabou por não ter um grande acolhimento na comunidade 
científica da época. Na realidade, todos os tipos de ondas então conhecidas (ondas sonoras, ondas na água, etc.) 
propagavam-se através de algum meio material, enquanto a luz vinda das estrelas, por exemplo, deveria chegar até 
nós através do espaço vazio. Por outro lado, a descrição ondulatória parecia inverosímil a muitos cientistas também 
pela dificuldade em explicar a propagação rectilínea da luz. Esses cientistas defendiam que, se a luz tivesse, de facto, 
uma natureza ondulatória, então ela deveria espalhar-se em todas as direcções e ser mesmo capaz de contornar os 
obstáculos. Este fenómeno − conhecido por difracção − não é facilmente observado com a luz, devido ao seu pequeno 
comprimento de onda. 

De facto, Francesco Grimaldi (1618-1663) chegou a observar experimentalmente o fenómeno da difracção da 
luz. Contudo, a grande reputação de Newton na comunidade científica fez com que a teoria corpuscular acabasse por 
prevalecer claramente sobre a teoria ondulatória durante mais de um século. De entre os poucos cientistas do século 
XVIII que aceitaram a teoria ondulatória e rejeitaram a teoria corpuscular de Newton podem-se referir os nomes de 
Leonard Euler (1707-1783) e de Benjamin Franklin (1706-1790).

A primeira demonstração experimental da natureza ondulatória da luz foi realizada, em 1801, por Thomas 
Young (1773-1829). Young calculou aproximadamente o comprimento de onda da luz e introduziu o conceito de 
interferência, que pode ser considerado como um princípio de sobreposição linear de ondas. Combinando este 
princípio com a teoria de Huygens, Augustin Fresnel (1788-1827) estudou a difracção da luz por vários objectos. 
Nessa altura, pensava-se que a luz era constituída por ondas longitudinais. Foi o fenómeno da polarização que 
levou Young a admitir que a luz era uma onda transversal. 

Em 1850, Jean Foucault (1791-1868) demonstrou experimentalmente que a velocidade da luz nos líquidos 
era menor do que no ar. Este facto constituiu uma vitória importante para a teoria ondulatória da luz, uma vez 
que a teoria corpuscular previa um resultado oposto. Entretanto, sucederam-se outros desenvolvimentos que 
levaram à aceitação generalizada da teoria ondulatória.

O desenvolvimento mais importante no plano teórico deveu-se ao trabalho de James Clerk Maxwell (1831-
-1879), que mostrou, em 1873, ser a luz um fenómeno ondulatório de natureza electromagnética. A sua teoria 
previa que as ondas electromagnéticas se propagariam no espaço com uma velocidade de cerca de 3 x 108 m/s, 
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um resultado que era igual ao valor obtido experimentalmente para a velocidade da luz. O físico alemão Heinrich 
Hertz (1857-1894) acabaria por confirmar, em 1888, a teoria de Maxwell. 

A tarefa seguinte consistiu em determinar as propriedades do meio que serviria de suporte às ondas 
electromagnéticas e, em particular, à luz. A este respeito, cedo apareceram várias dificuldades, dado que o éter, 
que havia sido postulado para o efeito, deveria apresentar algumas propriedades bastante estranhas. Por um 
lado, ele teria de ser muito transmissivo, dado que os corpos celestes atravessá-lo-iam sem serem minimamente 
afectados. Por outro, deveria apresentar forças restauradoras bastante intensas, de modo a produzir frequências 
extremamente elevadas (≈ 1015 Hz).

Os esforços tendentes a medir a velocidade da Terra relativamente ao éter culminaram, em 1881, na experiência 
de Albert Michelson (1852-1931). Nessa experiência, Michelson não verificou qualquer influência do movimento da 
Terra na propagação da luz através do éter. De facto, para explicar, com base na teoria ondulatória, o fenómeno da 
aberração estelar, conhecido já desde James Bradley (1693-1762), tinha de se admitir um movimento relativo entre 
a Terra e o éter. A solução para estas dificuldades foi dada pelo físico alemão Albert Einstein (1879-1955), quando 
enunciou em 1905 o princípio da relatividade restrita, que considerava desnecessária a existência do dito éter.

Apesar da teoria clássica do electromagnetismo, desenvolvida por Maxwell, ser capaz de descrever a maior 
parte das características da luz, ela não conseguia explicar alguns resultados experimentais obtidos já no final 
do século XIX. Entre esses resultados encontrava-se o efeito fotoeléctrico, descoberto por Hertz, que consiste na 
ejecção de electrões por um metal cuja superfície é exposta à luz. As observações experimentais revelam que a 
energia cinética dos electrões emitidos pelo metal não depende da intensidade da luz, o que contraria as previsões 
baseadas na teoria ondulatória. A explicação deste fenómeno foi dada por Einstein, em 1905, que usou o conceito 
de quantização desenvolvido por Max Planck (1858-1947) em 1900. 

Segundo o modelo quântico, a energia de uma onda luminosa encontra-se distribuída por unidades, 
chamadas fotões. De acordo com a teoria de Einstein, a energia de um fotão é proporcional à frequência da onda 
electromagnética:

E = hv	                                                              (1.1)

onde h = 6.63 x 10 ˗34 J.s é a chamada constante de Planck. É importante notar que esta teoria conjuga algumas 
noções, tanto da teoria ondulatória como da teoria corpuscular da luz. De facto, o efeito fotoeléctrico é o resultado 
da transferência de energia entre um dado fotão e um electrão do metal. Ou seja, o electrão interage com um fotão 
como se ele fosse uma partícula. Contudo, este fotão apresenta algumas características reminiscentes de uma 
onda. Por exemplo, a sua energia é determinada pela frequência, que é uma grandeza tipicamente ondulatória.

A teoria quântica desenvolveu-se rapidamente entre os anos 1925-1930 com a mecânica ondulatória de 
Erwin SchrÖdinger (1887-1961) e a mecânica matricial de Werner Heisenberg (1901-1976). A equivalência entre 
as duas teorias foi demonstrada por John von Neumann (1903-1957). Como resultado dessa teoria, considera-se 
hoje que qualquer partícula exibe igualmente propriedades ondulatórias. De facto, segundo Louis de Broglie 
(1892-1987), uma partícula com momento linear p tem associado um comprimento de onda λ, dado por :

           
	 λ =  h					      			                      (1.2)

        
p

A confirmação experimental da hipótese sugerida por Louis de Broglie aconteceu durante os anos de 1927- 
-1928 quando Clinton Davisson (1881-1958) e Lester Germer (1896-1971), nos EUA, e Sir George Thomson (1892-
-1975), em Inglaterra, observaram o fenómeno da difracção com um feixe de electrões. 

O facto de tanto os fotões como os electrões se comportarem como partículas ou como ondas parecia, 
numa fase inicial, uma contradição, dado que esses dois aspectos são aparentemente irreconciliáveis. Contudo, o 
chamado princípio da complementaridade, elaborado por Niels Bohr (1885-1962), pôs em evidência que tanto os 
fotões como os electrões não são nem partículas nem ondas, mas algo mais complexo que a ideia traduzida por 
esses modelos.
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A mecânica quântica, juntamente com a teoria da relatividade, mostra que o momento, p, e a velocidade, v, 
tanto das partículas materiais como dos fotões, são dados pelas mesmas expressões:

	 c
cmEp

422 -
=

							             	   
(1.3)

	
E

pcv
2

=
 pc

								               	   (1.4)

enquanto que o comprimento de onda, λ, é dado, em ambos os casos, pela Eq. (1.2). Nas Eq.s (1.3) e (1.4), m é 
a massa em repouso e E é a energia total da partícula, dada pela soma da energia correspondente à massa em 
repouso, mc2, e da sua energia cinética. 

Uma diferença essencial entre os electrões e os fotões é que os últimos não têm massa em repouso. Deste 
modo, as Eq.s (1.3) e (1.4) assumem um aspecto mais simples para este segundo tipo de partículas:

	
c
Ep = 								                           (1.5)

	 c
E

pcv ==
2  pc 								          (1.6)

Verifica-se, assim, que enquanto as partículas com massa em repouso diferente de zero apresentam uma 
velocidade inferior a c, partículas como os fotões têm uma velocidade constante c. A energia de um fotão não é uma 
função da sua velocidade, mas da sua frequência, como é indicado pela Eq. (1.1).

Uma outra diferença significativa entre os electrões e os fotões é que os primeiros obedecem à estatística 
de Fermi, enquanto os segundos obedecem à estatística de Bose. A estatística de Fermi não permite a existência, 
num dado sistema, de dois electrões no mesmo estado, enquanto a estatística de Bose não impõe essa proibição 
aos fotões. Deste modo, pode-se ter um grande número de fotões exactamente com as mesmas características, o 
que faz com que um dado feixe de luz possa ser representado por uma onda electromagnética contínua.

1.2 Teoria electromagnética para a luz

Como se referiu na secção anterior, a luz pode ser encarada como um fenómeno electromagnético, 
sendo, por isso, descrita com base nos mesmos princípios teóricos que governam todas as formas de radiação 
electromagnética. As frequências ópticas ocupam no espectro electromagnético uma banda relativamente 
estreita, que se estende desde o infravermelho até ao ultravioleta. Devido ao seu curto comprimento de onda, 
as técnicas usadas para gerar, transmitir e detectar ondas ópticas diferem, geralmente, das utilizadas para as 
ondas electromagnéticas de comprimento de onda superior. Contudo, a recente miniaturização dos componentes 
ópticos fez com que estas diferenças se tornassem menos significativas.

A radiação electromagnética propaga-se na forma de dois campos vectoriais ondulatórios mutuamente 
acoplados: o campo eléctrico e o campo magnético. A teoria ondulatória, na qual a luz é descrita através de 
uma única função escalar da posição e do tempo (a função de onda), constitui uma aproximação da teoria 
electromagnética, válida para ondas paraxiais dentro de certas condições. A óptica geométrica constitui, por sua 
vez, uma aproximação da óptica ondulatória, sendo válida no caso em que o comprimento de onda é muito menor 
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que as dimensões dos componentes encontrados pela luz. Deste modo, a óptica electromagnética abarca a óptica 
ondulatória, que, por sua vez, abarca a óptica geométrica. Na última secção deste capítulo mostra-se como a 
óptica geométrica pode ser considerada, de facto, como um limite da óptica electromagnética.

1.2.1 Equações de Maxwell

Na sua manifestação ondulatória, a luz comporta-se como uma onda electromagnética, ou seja, como uma 
perturbação envolvendo variações temporais e espaciais dos campos eléctrico e magnético acoplados. Deste modo, 
as suas características podem ser descritas a partir das equações de Maxwell, que se podem escrever na forma:

ρ=⋅∇ D




 									           (1.7)

0=⋅∇ B


                                                   						        (1.8)

B
t

E


∂
∂

-=×∇                                                     					       (1.9)

D
t

JH


∂
∂

+=×∇ 								        (1.10)

onde E


 é o campo eléctrico, D


 é o deslocamento eléctrico, H


 é o campo magnético, B


 é a indução magnética, J


 
é o vector densidade de corrente e ρ é a densidade de carga. O deslocamento eléctrico relaciona-se com o campo 
eléctrico na forma:

ED


ε= 	  								        (1.11)

onde ε  é a permitividade ou constante dieléctrica do meio. Por outro lado, o campo magnético relaciona-se com a 
indução magnética na forma:

HB


m= 	         							                       (1.12)

onde μ é a permeabilidade magnética. No caso do vazio, as constantes μ e ε assumem os valores:

 μ = μ0 = 4π x 10˗7 Hm˗1	 						      (1.13)
                  

10˗9  ε = ε0 =  −Fm˗1	  						                       (1.14)

                  
36π

As Eq.s (1.7) e (1.8) correspondem às leis de Gauss para a electricidade e para o magnetismo, respectivamente, 
enquanto a Eq. (1.9) corresponde à lei de Faraday e a Eq. (1.10) corresponde à lei de Ampere, modificada por 
Maxwell.

Ao escrever as Eq.s (1.7)-(1.10) considerou-se que o meio é uniforme e isotrópico. No caso desse meio estar 
liberto de fontes (J = 0 e ρ = 0), os campos eléctrico e indução magnética aparecem com uma notável simetria nessas 
equações. 
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1.2.2. Ondas electromagnéticas

Partindo das equações de Maxwell e considerando o caso de um meio liberto de fontes, mostra-se no 
problema PR 1.1 que o campo eléctrico satisfaz a seguinte equação de onda:

02

2
2 =

∂
∂

-∇ E
t

E


mεμε 								         (1.15)

De um modo semelhante, pode-se mostrar que o campo indução magnética satisfaz a mesma equação de onda:

02

2
2 =

∂
∂

-∇ B
t

B


mεμε 	  					       		  (1.16)

Verifica-se das Eq. (1.15) e (1.16) que os campos eléctrico e magnético se propagam com a mesma velocidade, v, 
dada por:

 
mε
1

=v
με

                                                                              				    (1.17)

A velocidade da luz para o vazio foi calculada por Maxwell usando os valores medidos experimentalmente para 

0m
 
e oε  por Wilhelm Weber (1804-1891) e Rudolph Kohlrausch (1809-1858). Ele obteve então um resultado que 

estava em acordo com o valor obtido experimentalmente para a velocidade da luz por Fizeau, em 1849. Esta coinci-
dência levou Maxwell a concluir que a luz deveria ser um fenómeno electromagnético. A velocidade da luz no vazio é:

v = c = 2.997924562 x 108  m/s  ±1,1 m/s   	      	              	         		  (1.18)

A razão entre a velocidade da luz no vazio, c, e a velocidade da luz num dado meio, v, define o índice de 

refracção, n, desse meio:

00εm
mε

==
v
cn με                                                                 				    (1.19)

Geralmente, as propriedades magnéticas do meio têm uma influência desprezável na velocidade de propagação 
da onda, podendo-se considerar 0mm ≈ . O índice de refracção do meio é, assim, basicamente determinado pela sua 
permitividade ε, a qual depende da frequência da onda electromagnética que nele se propaga.

As Eq.s (1.15) e (1.16) têm soluções na forma de ondas planas harmónicas, dadas por: 

{ }).(
0Re φω +-= rktieEE







Re                                                              				    (1.20)

 { })(
0Re φω +⋅-= rktieBB







Re 							       (1.21)

onde 0E


 e 0B


 são vectores, representando a amplitude das oscilações, ω é a frequência angular, k


 é o vector 
de onda, que define a direcção de propagação, e Re indica a parte real da expressão dentro das chavetas. Não 
escreveremos a seguir, de modo explícito, o “Re”, entendendo-se, no entanto, que os campos físicos são dados 
sempre pela parte real dos campos complexos que aparecem nas equações. 

Usando as equações de Maxwell e as Eq.s (1.20) e (1.21), mostra-se no problema PR 1.3 que os campos E


 e 
B


 são perpendiculares entre si e ambos perpendiculares à direcção de propagação, satisfazendo a relação:

)ˆ(1 Es
v

B


×=                                                                                  				    (1.22)
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onde kks /ˆ


=  é o vector unitário na direcção de propagação. A Eq. (1.22) condensa três características importantes 
das ondas electromagnéticas: 

i) B


 é perpendicular a E


,

ii) B


 está em fase com E


,

iii) as grandezas de B


 e de E


 relacionam-se na forma B = E/v.

Figura 1.2 – Propagação de uma onda electromagnética plana.

A Fig. 1.2 representa esquematicamente a propagação de uma electromagnética plana numa direcção 
indicada pelo vector de onda k



.

1.2.3. Densidade e fluxo de energia

A teoria electromagnética permite obter a seguinte expressão para a densidade de energia associada com 
os campos eléctrico e magnético no vazio:









⋅+⋅= BBEEU


0
0

1
2
1

m
ε  					       		  (1.23)   

   
Contudo, atendendo a que

EEEE
c

BB


⋅=⋅=⋅ 002
1 mε  				     			   (1.24)

pode-se escrever:
2

00 EEEU


εε =⋅=  					           		  (1.25)

A densidade do fluxo de energia na direcção de propagação é definida pelo chamado vector de Poynting:

HEBES


×=×= )(1

0m
				     			   (1.26)

A densidade de fluxo de energia numa direcção arbitrária, indicada por um dado vector unitário û , é dada pelo 
produto escalar Su



⋅ˆ . 
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No caso de ondas planas que se propagam no vazio, mostra-se no problema PR 1.5 que a média temporal 
da grandeza do vector de Poynting é dada por:

2
0

0

2
EcSI
 ε

=≡               					      		  (1.27)

onde 0E


 é o vector amplitude do campo eléctrico. A grandeza SI


=  é conhecida por densidade de fluxo 

radiante , ou intensidade, (W/m 2 ) e é designada por emitância ou irradiância, consoante esse fluxo se afasta ou 
incide, respectivamente, numa dada superfície. 

1.2.4. Fórmulas de Fresnel

Quando uma onda electromagnética incide na fronteira de separação entre dois meios com índices de 
refracção diferentes, n1 e n2 , ela é, em geral, parcialmente reflectida e parcialmente transmitida. Mostra-se no 
problema PR 1.8 que a relação entre o ângulo de incidência, iθ , e o ângulo de reflexão, rθ , é dada por:

ri θθ = 							        		  (1.28)

Este resultado traduz a chamada lei da reflexão. Mostra-se ainda no mesmo problema que a relação entre 
o ângulo de incidência, iθ , e o ângulo de transmissão, tθ , é dada por

ti nn θθ sensen 21 = 					      			   (1.29)

Este resultado traduz a chamada lei da refracção ou lei de Snell.

A razão entre as amplitudes das ondas reflectida e incidente é conhecida por coeficiente de reflexão, enquanto 
a razão entre as amplitudes das ondas transmitida e incidente define o chamado coeficiente de transmissão. As 
fórmulas de Fresnel traduzem o modo como estes coeficientes dependem dos ângulos de incidência, de reflexão e 
de transmissão, assim como da polarização da onda.

Na Fig. 1.3 mostra-se os raios incidente, reflectido e transmitido quando o vector campo eléctrico (a) se 
encontra no plano de incidência ou (b) é perpendicular a este plano. Os vectores E



 e B


 estão relacionados com 
o vector de onda através da Eq. (1.22).

Figura 1.3 –  Representação dos raios incidente, reflectido e transmitido quando 
o vector campo eléctrico (a) se encontra no plano de incidência ou (b) é perpendicular a este plano.
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As componentes dos campos E


 e H


 paralelas à interface devem ser iguais em ambos os lados da fronteira. 
No caso de os dois meios serem dieléctricos não magnéticos, as componentes paralelas do campo B



 satisfazem a 
mesma condição. Neste caso, e tendo em consideração a Fig. 1.3(a), pode-se escrever as seguintes relações:

tri BBB =+ 							                       	(1.30)

ttrrii EEE θθθ coscoscos =- 				                      		  (1.31)

Substituindo na Eq. (1.30) B = (n/c)E e combinando com a Eq. (1.31) pode-se obter os seguintes resultados 
para os coeficientes de reflexão e de transmissão correspondentes à Fig. 1.3(a):
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Usando a lei de Snell pode-se escrever os resultados anteriores na forma:
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Uma análise semelhante para o caso da Fig. 1.3(b), em que o campo eléctrico é perpendicular ao plano de 
incidência, permite obter os seguintes resultados para os coeficientes de reflexão e de transmissão.
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Usando a lei de Snell pode-se escrever os resultados anteriores na forma:

)sen(
)sen(
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-=⊥
								        (1.38)
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						          		  (1.39)

A Fig. 1.4 ilustra a variação destes coeficientes com o ângulo de incidência para o caso da interface entre o ar (n1≈1) 
e o vidro (n2≈1.5).

Pode-se verificar da Eq. (1.34) que ||r  se anula quando 2/pθθ =+ ti . O ângulo de incidência Bi θθ =  
correspondente a esta situação é conhecido por ângulo de Brewster e está indicado na Fig. 1.4. Para este ângulo de 
incidência, a luz reflectida encontra-se completamente polarizada, sendo o seu campo eléctrico normal ao plano 
de incidência. Por outro lado, uma placa de vidro posicionada segundo o ângulo de Brewster é completamente 
transparente para a luz cujo campo eléctrico seja paralelo ao plano de incidência. 
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Quanto aos coeficientes de reflexão e de transmissão em potência, tem-se:

2r
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r == 								        (1.40)
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Os coeficientes R e T são chamados reflectância e transmitância, respectivamente.

Figura 1.4 - Variação dos coeficientes de reflexão e de transmissão com o ângulo de incidência 
para o caso da fronteira entre o ar ( 11 ≈n ) e o vidro ( 5.12 =n ).

1.2.5. O limite da óptica geométrica

A óptica geométrica pode ser encarada como uma aproximação da óptica electromagnética, válida no 
limite em que o comprimento de onda tende para zero. Neste limite, as equações de Maxwell permitem obter 
uma equação que descreve a trajectória da normal à frente de onda. Esta normal corresponde ao chamado raio 

óptico e a sua equação de movimento designa-se por equação da eikonal.
Considere-se o caso de um meio linear, liberto de fontes e isotrópico, mas não-homogéneo, com uma 

permitividade eléctrica )(rεε = . Os campos eléctrico e magnético podem ser escritos na forma:

{ }ti
e erEtrE ω)(Re),(


= Re 						          	 (1.42)

{ }ti
e erBtrB ω)(Re),(


= Re 							       (1.43)

onde eE


 e eB


 são as respectivas amplitudes complexas. Neste caso, as equações de Maxwell podem ser apresentadas 
com o aspecto:
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onde

0
000
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l
pmεω ==k 						       		  (1.48)

é a constante de propagação no vazio e

0

)(
ε

εε r
r = 						       			   (1.49)

é a chamada  permitividade relativa. Considere-se soluções do tipo
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 ik            				                  			   (1.50)
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0)()( rLik
e erBrB -=

 ik                           			    			   (1.51)

onde L(r) é uma função chamada eikonal. Substituindo as Eq.s (1.50) e (1.51) nas Eq.s (1.44)-(1.47) e considerando 
o caso-limite 00 →l , ou seja, ∞→0k , mostra-se no problema PR 1.10 o seguinte resultado:

22
nL r ==∇ ε



                        			                          			   (1.52)

As superfícies L(r) = constante correspondem às chamadas frentes de onda. As normais a estas superfícies têm 
a direcção de L∇



, que satisfaz a chamada equação da eikonal:

snL ˆ=∇
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							         		  (1.53)		

O vector unitário ŝ  é normal à frente de onda e tangente ao raio luminoso, sendo dado por:
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No caso geral de um meio não-homogéneo, os raios luminosos têm uma trajectória curvilínea. Contudo, se 
o meio for homogéneo, o índice de refracção n não depende da posição, tendo-se:

)coscoscos()( zyx zyxnrL θθθ ++=                            	  			   (1.55)

onde zyx θθθ cos,cos,cos  são os chamados co-senos directores. A direcção do raio óptico é dada por

snkjinL zyx ˆ)ˆcosˆcosˆ(cos =++=∇ θθθ


			   			   (1.56)

Usando a definição dada pela Eq. (1.26), tem-se que o valor médio do vector de Poynting pode ser expresso 
na forma:
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Considerando a Eq. (1.54), tem-se:
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Este resultado é equivalente ao obtido na Eq. (1.27) no caso de se considerar o vazio (n = 1) e mostra que a 
direcção do vector de Poynting coincide com a direcção da normal à frente de onda geométrica.
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1.3. Problemas resolvidos

PR 1.1. Partindo das equações de Maxwel (1.7)-(1.10) e assumindo um meio material liberto de fontes, mostre que 
o campo eléctrico satisfaz a equação de onda dada pela Eq. (1.15).

Resolução
Num meio material liberto de fontes tem-se J = 0 e ρ = 0. Aplicando o rotacional a ambos os membros da 

Eq. (1.9), tem-se:

)()( B
t

B
t

E


×∇
∂
∂

-=







∂
∂

-×∇=×∇×∇  				     	        (1)

O membro esquerdo da Eq. (1) pode ser reescrito usando a seguinte identidade:

EEE


∇⋅∇-⋅∇∇=×∇×∇ )()( 				     		        (2)

Atendendo a que, para ρ = 0, se tem 0=⋅∇ E


, a relação anterior permite escrever:

EEE
 2)( -∇=∇⋅∇-=×∇×∇

∆−       				     		        (3)

A Eq. (1) fica então:

)(2 B
t

E


×∇
∂
∂

-=∇-     				     			         (4)

Utilizando as Eq.s (1.10)-(1.12), e passando tudo para o membro esquerdo na Eq. (4), obtém-se:

02

2
2 =

∂
∂

-∇ E
t

E


mεμε 					                    		   	       (5)

A Eq. (5) é a equação de onda para o campo eléctrico, sendo a velocidade de propagação da onda, v, dada por:

mε
1

=v
με

                                                                                     				         (6)

PR 1.2. Considere uma onda electromagnética plana que se propaga num meio dieléctrico e cujo campo eléctrico 
é dado por:

















×
-×= -7

14
0 103

106cos),( ztEtzE xx p 1014

10
					           (1)

tendo-se 0== zy EE . Na Eq. (1), t é dado em segundos e z em metros. Determine a velocidade de propagação da 
onda, o seu comprimento de onda no vazio e o índice de refracção do meio para a frequência em causa.



24

Resolução
A fase da onda dada é:

ztkzt 7
14

103
106 -×

-×=-=
ppωφ 1014

10
kz 						           (2)

Deste modo, tem-se

14106 ×= pω 1014 rad/s,    7103
2

-×
==

p
l
pk

10
 rad/m					          (3)

A velocidade de propagação e o comprimento de onda no meio em causa são dados, respectivamente, por:

8
7

14 108.1103)106( ×=
×

×==
-

p
pω

k
v 1014 10 10 	m/s					          (4)

e

600103)2(2 7
=

×
==

-

p
ppl

k
10

	nm						           (5)

O índice de refracção do meio é:

67.1
108.1

103
8

8
=

×
×

==
v
cn 10

10
1.67 							            (6)

O comprimento de onda no vazio é:

10000 == ll n nm								            (7)

PR 1.3. Usando as equações de Maxwell, assumindo um meio liberto de fontes e considerando o caso de ondas 
electromagnéticas planas, descritas pelas Eq,s (1.20) e (1.21), mostre que os campos E



 e B


 são:
a) perpendiculares à direcção de propagação da onda electromagnética;
 b) perpendiculares entre si, satisfazendo a Eq. (1.22).

Resolução
a) Considerando as Eq.s (1.7) (com ρ = 0),  (1.11) e (1.20) tem-se:

0=⋅-=⋅∇ EkiE





								              (1)

De modo semelhante, usando as Eq.s (1.8), e (1.21), tem-se:

0=⋅-=⋅∇ BkiB





 								              (2)

As Eq.s (1) e (2) mostram que os campos E


 e B


 são perpendiculares à direcção de propagação, indicada 
pelo vector de onda k



.

b) Assumindo os campos na forma indicada pelas Eq.s (1.20) e (1.21), a Eq. (1.9) fica:

BiEki




ω=×    					          	    		       (3)

ou seja,

)(1)(1 Ek
vk

EkB


×=×=
ω vk  				        			         (4)
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Pode escrever-se a Eq. (4) na forma:

)ˆ(1 Es
v

B


×=                                                                                   			        (5)

onde kks /ˆ


=  é o vector unitário na direcção de propagação. A Eq. (5) mostra que os campos E


 e B


 são 
perpendiculares entre si. 

PR 1.4. Dada uma onda electromagnética plana e harmónica, cujo campo eléctrico é dado por:









+






 -= ϕω

c
ztsenEtzE xx 0),( ,						            (1)

determine o correspondente campo indução magnética B


.

Resolução
Dado que 0== zy EE , tem-se da Eq. (1.9) que

t
B

z
E yx

∂

∂
-=

∂
∂ 								              (2)

Ou seja, usando a expressão dada para o campo eléctrico,









+






 -=

∂

∂
ϕωω

c
ztE

ct
B

x
y cos0

						            (3)

Integrando ambos os membros da equação anterior em ordem a t obtém-se:

),(11),( 0 tzE
cc

ztsenE
c

tzB xxy =







+






 -= ϕωsen 					           (4)

Confirma-se, neste caso particular, que os campos eléctrico e indução magnética são perpendiculares entre 
si e ambos perpendiculares à direcção de propagação, dada pelo eixo dos z. Por outro lado, as grandezas dos dois 
campos estão relacionadas na forma B = E/c.

PR 1.5.  Considerando o caso de ondas planas que se propagam no vazio, mostre que a média temporal da grandeza 
do vector de Poynting, que corresponde à intensidade I, é dada pela Eq. (1.27). Encontre uma relação entre a 
intensidade I e o valor médio da densidade de energia U .

Resolução
No caso da propagação de ondas planas no vazio, tem-se as seguintes expressões para os campos reais:

φcos0EE


= ,      ϕωφ +⋅-= rkt 



0  				                    		       (1)

e

φφ cos)(1cos 00
0

0 Ek
ck

BB





×== ck
 				                       	       (2)
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onde se usou a Eq. (1.22) para escrever o membro da direita na Eq. (2). Deste modo, o vector de Poynting é dado, a 
partir da Eq. (1.26), por:

φεφ
m

22
00

2
00

0
0

0
cosˆcos)(11 sEcEk

ck
ES






=××=
 ck

 	                                		        (3)

onde se considerou kks /ˆ


=   e  mε/1=c με . Devido à rápida variação temporal dos campos eléctrico e magnético, 
cujas frequências são da ordem de 1014   a 1015 Hz na zona visível do espectro, a grandeza do vector de Poynting 
varia também rapidamente com o tempo. Dado que o valor médio de φ2cos , sobre muitos ciclos, é 1/2, a média 
temporal da grandeza do vector de Poynting vem dada por:

2
0

0

2
EcSI
 ε

=≡               				                      		       (4)

Para uma onda no vazio, a densidade de energia é dada, a partir da Eq. (1.25), por:

φε 22
00 cosEU


=  								             (5)

e apresenta uma média temporal

2
0

0

2
EU
ε

=     					      			        (6)

Deste modo, considerando as Eq.s (4) e (6), verifica-se que a densidade de fluxo I se relaciona com o valor 
médio da densidade de energia na forma:

UcI =  									              (7) 

PR 1.6.  Mostre que a equação de onda, dada pelas Eq.s (1.15) e (1.16), admite soluções na forma de ondas esféricas. 
Considere para o efeito as coordenadas esféricas:

φθ cossenrx = 								           (1a)

φθ sensenry = 								           (1b)

z r= cosθ 									            (1c)

Resolução
O Laplaciano 2∇≡∆  em coordenadas esféricas é dado por.

2
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222
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1sen

sen
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			        (2)

Uma onda esférica apresenta uma simetria esférica, ou seja, não depende de θ  e  ϕ. Portanto, a expressão 
anterior do Laplaciano reduz-se à forma:

rrrr
r

rr ∂
∂

+
∂
∂

=







∂
∂

∂
∂
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21

2

2
2

2 						           (3)
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Aplicando a expressão anterior à amplitude E de um campo escalar, tem-se

)(1
2

2
rE

rr
E

∂
∂

=∆ rE 								             (4)

A equação de onda, dada pela Eq. (1.15), assume então o aspecto:

01)(1
2

2

22

2
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∂
∂

-
∂
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t
E

c
rE

rr
rE 							            (5)

Multiplicando ambos os membros por r, a Eq. (5) fica

0)(1)( 2

2

22

2
=

∂
∂

-
∂
∂ rE

tc
rE

r
rE rE 							            (6)

A Eq. (6) é uma equação de onda unidimensional para rE e tem como soluções

rE(r,t) = f(r−ct)     	 e      rE(r,t) = g(r+ct) 					          (7)

onde f e g são funções arbitrárias. A onda

)(1),( ctrf
r

trE -= ct  								            (8)

representa uma onda esférica propagando-se radialmente a partir da origem r = 0, enquanto a onda 
	

)(1),( ctrg
r

trE += ct 								             (9)

representa uma onda esférica convergindo para a origem.

No caso de uma onda harmónica esférica, tem-se

)sen(),( krt
r
AtrE ±= ω kr 							          (10)

A amplitude A/r de uma onda esférica decresce proporcionalmente a 1/r. 
	

PR 1.7.  Um feixe laser colimado tem um diâmetro de 2 mm e uma potência de 600 mW. Determine a densidade 
de fluxo do feixe e a amplitude dos campos eléctrico e indução magnética.

Resolução
A área da secção do feixe é ( )2310 -p 10 , pelo que a densidade de fluxo é dada por:

5
23

3
1091.1

)10(
10600

×=
×

= -

-

p
I 10

10
1.91 × 10  W/m 2 						            (1)

A partir da Eq. (1.27), tem-se que a amplitude do campo eléctrico é dada por:

4

0
0 1020.12

×==
c
IE

ε
1.20 × 10  V/m							            (2)
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Usando a Eq. (1.22), obtém-se a amplitude da indução magnética:

50
0 1000.4 -×==

c
EB 4.00 × 10  T							            (3)

PR 1.8. Considere uma onda plana monocromática que incide na superfície de separação entre dois meios com 
índices de refracção n1 e n2 , de acordo com a figura em baixo. 

Figura 1.5 - Geometria para ilustrar os raios incidente, reflectido e refractado.

Considere que a onda incidente pode ser escrita na forma { })(exp0 rktiEE iii





⋅-= ω , dando origem a duas 

ondas com a mesma frequência: uma onda reflectida, { })(exp0 rktiEE rrr





⋅-= ω , e uma onda refractada, ou 

transmitida, { })(exp0 rktiEE ttt





⋅-= ω .

Obtenha as relações que se devem verificar entre os ângulos θi  e  θr  (lei da reflexão), assim como entre os 

ângulos θi  e  θt   (lei da refracção).                              
	

Resolução
Para que exista uma relação entre as amplitudes das três ondas envolvidas, válida em todos os pontos da 

superfície de separação entre os dois meios e para todos os instantes de tempo, torna-se necessário que os termos 
de fase sejam iguais. Resulta daí que deve verificar-se a relação:

rkrkrk tri












⋅=⋅=⋅ 						          		       (1)

As igualdades anteriores implicam que:

Nbkk ir
ˆ

1=-


							                             (2)

Nbkk it
ˆ

2=-


				          			                         (3)

onde N̂ é um vector perpendicular à superfície e b1 e b2 são dois escalares. Atendendo a que se tem ii snkk ˆ10=


, 

rr snkk ˆ10=


  e  tt snkk ˆ20=


, as relações anteriores podem ser escritas na forma:

( ) Nassn ir
ˆˆˆ 11 =- 					                                      		      (4)

Nasnsn it
ˆˆˆ 212 =- 						                         	      (5)
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onde 0/ kba ii = , i = 1, 2. Projectando a Eq. (4) na superfície de separação entre os dois meios, obtém-se o 
resultado

ri θθ = 						                                                    	      (6)

que corresponde à lei da reflexão. De modo semelhante, projectando a Eq. (5) na mesma superfície de separação, 
obtém-se a relação:

ti nn θθ sensen 21 = 						                       	      (7)

que traduz a lei de Snell, ou lei da refracção. 

PR 1.9. Derive expressões para os coeficientes de reflexão e de transmissão no caso de uma incidência normal e 
calcule os seus valores para uma interface ar-vidro, em que se tem n1 = 1  e  n2 = 1.5. Calcule a percentagem da 
potência incidente que é reflectida nessa interface.

Resolução
Quando a incidência na superfície de separação entre os dois meios é próxima da normal, tem-se 0≈≈ ti θθ , 

pelo que 1coscos ≈≈ ti θθ . Neste caso, os coeficientes de reflexão e de transmissão ficam independentes da 
polarização, sendo dados por:

21

12
|| nn

nnrrr
+
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=-=≡ ⊥|| 						                        	       (1)

21

1
||

2
nn

nttt
+

=== ⊥||
						                         	      (2)

Verifica-se dos resultados anteriores que o coeficiente de transmissão é sempre positivo, enquanto que o 
sinal do coeficiente de reflexão depende do valor relativo de n1 e  n2 . 

Quanto aos coeficientes de reflexão e de transmissão em potência, tem-se 

2

21
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
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==
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nnrR 					                                     		      (3)
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n
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+
== 					                                    	      (4)

Verifica-se dos resultados anteriores que  R + T = 1, um resultado que era esperado na ausência de absorção, 
situação em que a energia radiante é conservada. 

No caso de uma reflexão externa na interface ar-vidro, tem-se

2.0
15.1
15.1

=
+
-

=r 								             (5)

8.0
15.1

2
=

+
=t 								             (6)

Ou seja, verifica-se que cerca de 4% da potência incidente na interface entre o ar e o vidro é reflectida.
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PR 1.10. Usando as Eq.s (1.50) e (1.51) nas Eq.s (1.44)-(1.47)  e considerando o limite 00 →l , obtenha a equação 
da eikonal, dada pela Eq. (1.53).

Resolução
Substituindo as Eq.s (1.50) e (1.51) nas Eq.s (1.44)-(1.47), obtêm-se os resultados
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0 EE
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EL rr


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 ⋅∇
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( ) 0
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00 B
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cLBcE
rr



×∇+∇×=
εε 				                       	      (4)

Considerando o caso-limite 00 →l , ou seja, ∞→0k , obtêm-se as expressões:

00 =∇⋅=∇⋅ LBLE


 						                         	      (5)

c
ELB 0

0



 ×∇
= 			     			    		       (6)

LBcE
r

∇×=


00 ε
            					                        	      (7)

Eliminando 0E


 na Eq. (6) à custa da Eq. (7), ou eliminando 0B


 na Eq. (7) à custa da Eq. (6) obtém-se:

LEL ∇××∇


)( 0 000
2

)( ELELEL r



ε=∇⋅∇-∇= 		                     		       (8)

)( 0 LBL ∇××∇


000
2

)( BLBLBL r



ε=∇⋅∇-∇= 		                    	  	      (9)

Atendendo à Eq. (5), as segundas parcelas nos membros centrais das Eq.s (8) e (9) anulam-se e obtém-se 
o resultado:

22
nL r ==∇ ε



                        			    			                      (10)

As normais às superfícies L(r) = constante têm a direcção de L∇


 e representam os raios da óptica 
geométrica. Da Eq. (10) obtém-se a equação da eikonal:

snL ˆ=∇


							                          	     (11)		
	
onde ŝ  é um vector unitário normal à superfície L(r) = constante.
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1.4. Problemas propostos

PP 1.1. 
a) Calcule a frequência, a energia, o momento e a massa de um fotão com comprimento de onda l = 600 nm.
b) Obtenha a relação entre o comprimento de onda de um fotão, medido em angstroms, e a sua energia, 

medida em electrões-volt.

PP 1.2. Um feixe de luz verde (l = 500 nm) incide normalmente num espelho totalmente reflector. Determine o 
número de fotões que incidem no espelho em cada segundo, sabendo que a força exercida nele pela luz é de 1 N.

PP 1.3. Considere uma onda electromagnética plana que se propaga no vazio e cujo campo eléctrico  é dado, no SI,  por:

( )[ ]zttzEx
6143 102106cos10),( ×-×= p10 1014 10 	

tendo-se 0== zy EE . Determine a amplitude, velocidade, frequência, comprimento de onda e período da onda.

PP 1.4. Considere que o campo eléctrico tem componentes:

0=xE ,	      { }xtEEy βα -= exp0 ,   	         0=zE

a) Calcule E


.∇  e E


×∇ .

b) Deduza as componentes (dependentes do tempo) de B


.

c) Calcule B


.∇  e B


×∇ .

d) Determine a relação que deve existir entre α e β para que as equações de Maxwell sejam satisfeitas.

PP 1.5. Mostre que o valor médio no tempo de 2E  é equivalente a (E*E/2) se { })(exp0 krtiEE -= ω kr .

PP 1.6. Uma onda electromagnética harmónica plana, com comprimento de onda λ = 650 nm, propaga-se na 
direcção do eixo dos z. Supondo que a densidade de fluxo é 13.3 W/m 2 , e que o campo eléctrico se encontra 
linearmente polarizado na direcção do eixo dos x, obtenha uma expressão para o campo indução magnética B



.

PP 1.7.  Uma lâmpada de 60 W converte 3% da sua potência eléctrica em luz. A radiação distribui-se uniformemente 
num ângulo sólido de 1sr. Calcule a densidade de fluxo e a amplitude do campo óptico a uma distância de 50 cm 
da lâmpada. Assuma que as ondas de luz são harmónicas.

PP 1.8. A densidade de fluxo a uma distância de 2 m de uma fonte pontual é 20 2mW/cm . Determine o fluxo total 
emitido pela fonte. Calcule a densidade de fluxo a uma distância de 4 m da fonte.

PP 1.9.  Um laser de He-Ne (λ = 632.8 nm) emite um feixe de luz cilíndrico com uma secção de 0.35 cm2. A potência 
recebida por um detector colocado normalmente ao feixe é de  0.5 W.

a) Calcule o valor da norma do campo eléctrico.
b) Qual a potência emitida por uma lâmpada de incandescência, de igual eficiência, situada à distância de 

2 m do detector?
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PP 1.10. Suponha que uma onda, linearmente polarizada, incide numa interface, de tal modo que o plano do 
vector campo eléctrico faz um ângulo iφ  com o plano de incidência. Mostre que, neste caso, a reflectância é dada 
por:

ii RRR φφ 22
|| sencos ⊥+= ||

	

onde ||R  e ⊥R  são as reflectâncias das componentes do campo eléctrico paralela e perpendicular ao plano de 
incidência, respectivamente.

1.5. Referências bibliográficas

1.   BORN, M. e WOLF, E., Principles of Optics, 6ª Ed.. Oxford: Pergamon Press, 1980.

2.   DITCHBURN, R. W., Light. London: Academic Press, 1976.

3.   HALL, A. R., All Was Light – an Introduction to Newton’s Opticks. Oxford: Clarendon Press, 1993.

4.   RONCHI, V., The Nature of Light. Cambridge, Mass.: Harvard University Press, 1971.

5.   SABRA, A. I., Theories of Light From Descartes to Newton. London: Osbourne, 1967.

6.   SIMMONS, J. e GUTTMANN, M., States, Waves and Photons: a Modern Introduction to Light. Addison-Wesley, 1970.

7.   COOK, D. M., The Theory of the Electromagnetic Field. Englewood Cliffs, N. J.: Prentice-Hall, 1975.

8.   HAUS, H. A., Waves and Fields in Optoelectronics. Prentice-Hall, 1984.

9.   HECHT, E., Optics, 5th Ed.. Pearson Education Limited, 2017.

10. KLEIN, M. e FURTAK, T., Optics, 2ª Ed.. New York: John Wiley & Sons, 1986.

11.  STAELIN, D. H.; WORGENTHALER, A. W. and KONG, J. A., Electromagnetic Waves. Prentice-Hall, 1994.



33

Capítulo 2

ÓPTICA GEOMÉTRICA 

A óptica geométrica constitui uma descrição aproximada do fenómeno óptico, que é aceitável quando 
as dimensões dos componentes do sistema óptico (espelhos, lentes, aberturas, etc.) são bastante superiores ao 
comprimento de onda da luz. Quando esta condição não se verifica, e a natureza ondulatória da luz não pode ser 
ignorada, está-se no domínio da chamada óptica ondulatória. Ou seja, a óptica geométrica pode ser considerada como 
um caso limite da óptica ondulatória, que se verifica quando o comprimento de onda da luz se torna desprezável.

O elemento básico na descrição da óptica geométrica é o conceito de raio óptico, que corresponde a um segmento 
de recta orientado que indica a transmissão de energia radiante de um ponto para outro num sistema óptico. Quando 
o sistema óptico é constituído por vários meios homogéneos, o trajecto da luz é representado por uma sequência de 
segmentos de recta. Sempre que a luz é reflectida ou refractada verificam-se descontinuidades na direcção desses seg-
mentos. O comportamento do raio óptico nestas situações é regulado por duas leis: a lei da reflexão e a lei da refracção.

2.1. Reflexão num espelho plano

A Fig. 2.1 ilustra a reflexão de um raio luminoso num espelho plano. Tendo por base a geometria desta figura e 
o princípio do tempo mínimo de Fermat, referido no capítulo anterior, mostra-se no problema PR 2.1 que os ângulos 
de incidência, iθ , e de reflexão, rθ

 
, satisfazem a relação:

Figura 2.1 - Geometria para descrever a lei da reflexão num espelho plano.

ri θθ = 								              	    (2.1)

A Eq. (2.1) traduz a lei da reflexão, segundo a qual os ângulos feitos pelos raios incidente e reflectido 
relativamente à normal no ponto de incidência são iguais. A lei da reflexão estabelece ainda que o raio incidente, 
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o raio reflectido e a normal ao espelho no ponto de incidência se situam num mesmo plano, chamado plano de 
incidência. 

A Fig. 2.2 mostra a formação da imagem num espelho plano. Para um observador, os raios provenientes do 
ponto B do objecto e reflectidos no espelho parecem provir do ponto imagem B’. O ponto B’ está a uma distância do 
espelho, igual à distância entre este e o ponto B. Todos os pontos de um objecto extenso têm imagens que se podem 
obter de maneira semelhante. Deste modo, pode-se concluir que a posição da imagem não depende da posição do 
observador e que o seu tamanho é igual ao tamanho do objecto, ou seja, que a ampliação é unitária. Por outro lado, 
verifica-se que o lado esquerdo no objecto aparece como o lado direito na imagem e vice-versa.

Figura 2.2 – Formação da imagem num espelho plano.

2.2. Espelhos esféricos

Um espelho esférico corresponde a parte de uma superfície esférica, que apresenta um raio R e um centro de 
curvatura C. Na Fig. 2.3 representa-se os casos (a) de um espelho esférico côncavo e (b) de um espelho esférico convexo. 
O eixo principal do espelho é a linha que passa pelo ponto V (chamado vértice) e pelo centro de curvatura C. Os raios 
reflectem--se no espelho de acordo com a lei da reflexão ( ri θθ = ). Quando os raios incidentes no espelho são paralelos 
ao eixo principal, os raios reflectidos passam, no caso de um espelho côncavo, por um dado ponto F, chamado foco 

principal. No caso de um espelho convexo, todos os raios reflectidos parecem provir desse foco principal, que neste 
caso se situa atrás do espelho.

 				             (a)	 (b)

Figura 2.3 – Representação (a) de um espelho esférico côncavo e (b) de um espelho esférico convexo.
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A Fig. 2.4 ilustra o processo de localização da imagem de um objecto  linear formada por um espelho côncavo. 
São considerados para o efeito três raios: um que incide no espelho paralelamente ao eixo óptico (a), outro que 
incide no vértice V do espelho (b) e um outro que passa pelo centro de curvatura do espelho (c). Na prática, a 
localização da imagem pode ser feita utilizando apenas dois destes raios.

Figura 2.4 – Geometria para a localização da imagem produzida por um espelho côncavo.

Da análise da Fig. 2.4 e assumindo a chamada aproximação paraxial,  segundo a qual os ângulos entre os 
raios luminosos e o eixo óptico são suficientemente pequenos, obtém-se no problema PR 2.2 o resultado

fRss
12

'
11

≡-=+ 							              	   (2.2)

                   ___           ___           ___
onde  s = MV,  s' = M'V , R = CV   e

2
Rf -= 									           (2.3)

é a distância focal do espelho.  Tem-se ainda a relação:

s
sA

h
h

l
''

-=≡ 							                          (2.4)

A grandeza Al  corresponde à chamada ampliação lateral da imagem. Se Al < 1 tem-se uma imagem 
reduzida, enquanto que para Al  > 1 se tem uma imagem ampliada. Por outro lado, se Al > 0 a imagem é direita, 
enquanto Al  <  0 indica uma imagem invertida.

Na resolução de problemas relativos à determinação da imagem formada por espelhos esféricos é 
importante estabelecer algumas convenções quanto aos sinais das grandezas envolvidas. Assim:

a)	 As distâncias s e s’ medidas na parte da frente do espelho são positivas, enquanto na parte de trás são 
negativas. No primeiro caso, o objecto e a imagem são reais, enquanto no segundo caso são virtuais.

b)	 A distância focal f é positiva para um espelho côncavo e negativa para um espelho convexo.
c)	 As alturas, h, medidas acima do eixo principal são positivas, enquanto abaixo desse eixo são negativas.
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2.3. Lei de Snell para a refracção

Figura 2.5 – Geometria para demonstrar a lei da refracção.

A Fig. 2.5 ilustra a refracção de um raio luminoso na interface entre dois meios homogéneos e transparentes 
com índices de refracção diferentes, n1  e  n2 . Como se viu no Capítulo 1, o índice de refracção de um meio é dado 
pela razão entre as velocidades da luz no vazio e nesse meio. Tendo por base a geometria da Fig. 2.5, e usando o 
princípio do tempo mínimo de Fermat, deriva-se no problema PR 2.3  a chamada lei da refracção:

ti nn θθ sensen 21 = 							                     	   (2.5)

De notar que, sendo n1  <  n2 , se tem pela Eq. (2.5) it θθ < . Contudo, quando se tem n1  >  n2 verifica-se        
que it θθ > . Neste caso, existe um ângulo de incidência crítico, ci θθ = , para o qual o ângulo de transmissão é 

º90=tθ 90 . Usando a Eq. (2.5) tem-se que









= -

1

21

n
nsencθ  sen 							            	   (2.6)

Para valores do ângulo de incidência ci θθ > , não existe raio transmitido e o raio incidente sofre uma reflexão 

interna total. Este fenómeno é essencial no domínio da óptica guiada, como se verá no capítulo 5.

2.4. Refracção numa superfície esférica 

A Fig. 2.6 ilustra a trajectória de um raio que incide num ponto P pertencente à superfície esférica 
de separação entre dois meios homogéneos, com índices de refracção n1  e  n2 . Usando a lei da refracção 
na aproximação paraxial, obtém-se no problema PR 2.4 a seguinte relação entre as distâncias objecto, s, e      
imagem, s’: 
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Figura 2.6 – Geometria para o estudo da refracção de um raio numa superfície esférica.

D
R

nn
s
n

s
n

=
-

=+ 1221

'
							         (2.7)

A grandeza D na Eq. (2.7) é chamada potência do dioptro e tem por unidade a dioptria quando R  é dado 
em metros. 

Por convenção, considera-se que a distância s é positiva (negativa) se a luz provém de um ponto à esquerda 
(direita) do dioptro, enquanto que a distância s’ é positiva (negativa) se a luz se dirige para um ponto à direita 
(esquerda) desse mesmo dioptro. Por outro lado, o raio R considera-se positivo (negativo) se o centro de curvatura 
do dioptro se situa à direita (esquerda) do vértice V.

2.5. A lente delgada

Uma lente simples é um sistema refractivo definido por duas interfaces, sendo que pelo menos uma delas 
deve ser curva. O caso de uma lente esférica delgada, cuja espessura se considera desprezável, pode ser analisado 
com base na Eq. (2.7). Suponhamos que a lente é constituída por um vidro com índice de refracção n, limitado por 
duas superfícies esféricas, e que se encontra no ar. A refracção na primeira superfície, com um raio de curvatura 
R1, é descrita pela equação:

1

1
"

1
R

n
s
n

s
-

=+
s”  								          (2.8)

onde s”   é a distância da imagem relativamente a essa superfície. Esta imagem funciona como objecto para a 
segunda refracção, situando-se a uma distância –s”    da segunda superfície, de raio de curvatura R2 . A equação 
para a segunda refracção será então:

2

1
'

1
)"( R

n
ss

n -
=+

-s”  , 							             	   (2.9)

Adicionando as Eq.s (2.8) e (2.9)  obtém-se
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n
ss , 						            	 (2.10)
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que é a chamada equação das lentes delgadas, também conhecida por equação dos fabricantes de lentes. Fazendo 
∞→s  ( ∞→'s, ), tem-se s’  = f (s = f ), onde 

1

21

11)1(
-


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
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


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


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


--=

RR
nf 					           		  (2.11)

é a chamada distância focal da lente. O inverso da distância focal corresponde à potência da lente, que é igual à 
soma das potências dos dois dioptros que delimitam a lente. Quando se tem 0>f , diz-se que a lente é positiva, 
ou convergente. Por outro lado, quando 0<f , diz-se que a lente é negativa, ou divergente.

Na Fig. 2.7 representa-se a formação da imagem de um dado objecto por uma lente delgada biconvexa. 
Considera-se para o efeito três raios: um que sai do objecto paralelamente ao eixo óptico e que, após atravessar a 
lente, passa pelo foco secundário ( iF ), outro que passa pelo centro da lente (O) e que não é desviado, e um terceiro 
raio que passa pelo foco primário ( oF ) e emerge da lente paralelamente ao eixo óptico. De facto, basta usar apenas 
dois destes raios para encontrar a imagem de um qualquer ponto do objecto.

Figura 2.7 – Formação de imagem por uma lente delgada biconvexa.

Considerando a semelhança dos triângulos OAA 21  e OBB 21  na Fig. 2.7, tem-se que a ampliação lateral da 
imagem é dada por:

s
s

h
hAl

''
-=≡ 								        (2.12)

Pode-se verificar facilmente das Eq.s (2.10) e (2.11) que no caso de um objecto real e situado a uma distância s da 
lente, tal que s > f, a imagem correspondente é também real (s’ > 0) mas invertida ( 0<lA ). Contudo, quando o objecto 
se situa a uma distância s < f, a imagem correspondente é virtual (s’ < 0) e direita ( 0>lA ).

2.6. O método matricial

Antes de construir um sistema óptico, pode-se usar a óptica geométrica para traçar raios através desse 
sistema com o objectivo de estudar o seu desempenho. Para este efeito, é conveniente escrever as equações em 
causa na forma matricial, dado que a álgebra de matrizes permite tratar com relativa simplicidade o problema 
da propagação dos raios luminosos através de qualquer sistema óptico. Nesta secção descreve-se os aspectos 
principais do método matricial, assumindo para o efeito a aproximação paraxial já antes referida.
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A Fig. 2.8 representa a propagação de um raio luminoso através de uma lente espessa. Assume-se que as 
superfícies da lente apresentam uma curvatura esférica, com raios de curvatura 1R  (superfície da esquerda) e 

2R  (superfície da direita). Os pontos 1V e 2V  são os vértices das superfícies ópticas e correspondem à intersecção 
dessas superfícies com o eixo óptico.

Figura 2.8 - Geometria para o traçado de raios numa lente espessa.

Usando a lei da refracção na aproximação paraxial, mostra-se no problema PR 2.8 que a altura, x1, e o 
ângulo feito com o eixo ótico, γ, do raio incidente no ponto A se relacionam com as correspondentes grandezas 
(x1" e "γ ) do raio refractado através da seguinte equação matricial:
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onde
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é a potência do dioptro.

A matriz
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
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descreve a refracção no ponto A da superfície esférica, sendo, por isso, chamada matriz de refracção. O seu 
determinante é:

| R 1 | = 
2

1

n
n                                        					           	 (2.16)

Mostra-se igualmente no problema PR 2.8 que a altura, x1" , e o ângulo com o eixo ótico, "γ , do raio 
refractado no ponto A se relacionam com as correspondentes grandezas do raio incidente no ponto B (x2'' e "2γ ) 
através da seguinte equação matricial:
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onde d é a espessura da lente. 
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A matriz

T = 

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
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


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1 d 								             	 (2.18)  

descreve a propagação do raio entre as duas superfícies da lente e é chamada matriz de transferência. O seu 
determinante é

|T| = 1								            	 (2.19)

A refracção do raio no ponto B da segunda superfície da Fig. 2.8 pode ser descrita usando o mesmo método 
que conduziu à Eq. (2.15). Neste caso, obtém-se a seguinte equação matricial:
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onde x2'  e 'γ  representam, respectivamente, a altura e o ângulo com o eixo óptico do feixe transmitido, enquanto que

            2
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é a potência do segundo dioptro. A matriz de refracção para este dioptro é, então:
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O produto das três matrizes (2.15), (2.18) e (2.22) dá a chamada matriz de sistema, L,  para o caso de uma 
lente espessa:

L ≡ 
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





2221

1211

aa
aa a11      a12

 a21      a22

 = R2TR1				      		                  (2.23)

Pode-se mostrar que o determinante da matriz de sistema é:

|L| = |R2||T||R1|
3

1
21122211 n

naaaa =-= = a11a22 − a12a21
		     	  		                   (2.24)

Se o índice de refracção for o mesmo no princípio e no fim do trajecto do raio luminoso, o determinante da 
matriz de sistema é 1.

No caso particular de uma lente delgada tem-se 0→d . Se essa lente se situar no ar, tem-se ainda 131 == nn , 
pelo que a sua matriz assume um aspecto particularmente simples:
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						                         	 (2.25)

onde
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f

+= 						            	                 (2.26)

Pode-se verificar que a Eq. (2.26) está de acordo com a Eq. (2.11).
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2.7. Matriz de sistema para a 
formação de imagem

A matriz de sistema que representa a formação de imagem por uma lente depende da matriz de transferência,  
T0, do objecto até à lente, da matriz da própria lente, L, e da matriz de transferência desde a lente até à imagem, 
Ti sendo dada por

S = TiLT0	 							                        (2.27)	 	

O procedimento que conduziu à Eq. (2.27) pode ser generalizado a qualquer sistema óptico. Deste modo, 
indicando a matriz desse sistema na forma
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onde x0 (xi ) e γ0  (γi ) representam, respectivamente, a altura e o ângulo com o eixo óptico do raio objecto (imagem). 
O anulamento dos elementos da matriz ABCD na Eq. (2.29) corresponde a diferentes situações que importa 
analisar:

1.  D = 0. Neste caso, tem-se γi = Cx0  independentemente de γo , significando que todos os raios 
provenientes de um mesmo ponto no plano objecto, situado a uma distância x0  do eixo óptico, deixam 
o sistema fazendo um mesmo ângulo com o eixo óptico. Ou seja, o objecto situa-se no plano focal 

primário do sistema.
2. A = 0. Este caso é semelhante ao anterior, tendo-se xi = Bγ0 . Ou seja, todos os raios incidentes no 

sistema óptico, segundo um mesmo ângulo, são focados num mesmo ponto, situado a uma distância xi  

do eixo óptico. Este ponto situa-se no plano focal secundário do sistema.

3. B = 0. Neste caso tem-se xi = Axo independentemente de γo , significando que todos os raios provenientes 
de um mesmo ponto no plano objecto convergem para um mesmo ponto no plano imagem. Ou 
seja, o anulamento do elemento B da matriz de sistema permite determinar a posição da imagem. 
Simultaneamente, verifica-se que o elemento A corresponde à ampliação desse sistema.

4. C = 0. Neste caso tem-se γi = Dγo . Ou seja, todos os raios que entram no sistema numa dada direcção, 
paralelamente entre si, saem do sistema também paralelamente uns aos outros, embora numa direcção 
diferente. Esta situação corresponde à configuração de um telescópio, sendo a sua ampliação angular 
dada pelo elemento D.
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2.8. Sistemas ópticos periódicos

Um sistema óptico periódico consiste numa sequência de sistemas unitários idênticos. Um exemplo de um 
sistema óptico periódico é dado por um conjunto de lentes idênticas e igualmente espaçadas. Outro exemplo pode 
ser um conjunto de dois espelhos, formando uma cavidade óptica ressonante. Nestes casos, os raios atravessam o 
mesmo sistema unitário repetidamente. 

Considere-se um raio que entra no sistema a uma altura x0 e fazendo um ângulo γ0  relativamente ao eixo 
óptico. Para determinar os valores (xp, γp ) desses parâmetros à saída do p-ésimo estágio, deve-se fazer actuar a 
matriz ABCD  que caracteriza o sistema unitário p vezes. A relação entre esses parâmetros à saída do p-ésimo e 
do (p+1)-ésimo estágio é dada por:
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Partindo da Eq. (2.30), e assumindo que |S| = AD −BC = 1 , pode-se obter a seguinte equação para a evolução 
da altura do raio, xp : 

0)( 12 =++- ++ ppp xxDAx 				         	  		  (2.31)

Mostra-se no problema PR 2.12 que  solução da Eq. (2.31) pode ser apresentada na forma:

( )0max ψψ += psenxxp  sen 						                      (2.32)

onde xmax  e  0ψ  são constantes determinadas a partir das condições iniciais do raio e
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Para que xp  seja dada por uma função harmónica, como na Eq. (2.32), a variável [ ]2/)(cos 1 DA += -ψ  
deve ser real. Isto implica que se verifique a condição

1
2

≤
+ DA  							             	                 (2.33)

Se, pelo contrário, se tiver 1
2

>
+ DA , então 0ψ  será imaginário e a solução será dada por uma função 

hiperbólica, cujo valor aumenta monotonamente com p. 

Uma solução harmónica assegura que a distância ao eixo óptico, xp , permanece limitada para todos os 
valores de p. 

Ou seja, a Eq. (2.33) corresponde a uma condição de estabilidade para a trajectória do raio.
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2.9. Aberrações

O traçado rigoroso de raios através de um sistema óptico permite evidenciar discrepâncias relativamente às 
previsões da teoria paraxial, ou teoria de primeira ordem, apresentada nas Secções 2.2 e 2.3. Essas discrepâncias 
são chamadas aberrações e podem ser de dois tipos: cromáticas (devido à dependência do índice de refracção com 
o comprimento de onda) ou monocromáticas, que ocorrem mesmo com luz monocromática. 

2.9.1. Aberrações monocromáticas

A função seno pode expandir-se numa série de Maclaurin:

...
!5!3

sen
53

-+-=
γγγγ                       		              			                   (2.34)

Quando se consideram apenas os dois primeiros termos no membro direito da Eq. (2.34) tem-se a chamada 
teoria de terceira ordem. Os desvios desta teoria relativamente à teoria de primeira ordem dão origem às chamadas 
aberrações primárias: aberração esférica, coma, astigmatismo, curvatura de campo e distorção. A consideração dos 
termos de ordem superior à terceira no desenvolvimento da Eq. (2.34) permite construir aberrações de ordem 
superior.  Contudo, abordaremos a seguir, de modo sumário, apenas as aberrações primárias.

a) Aberração esférica

A aberração esférica consiste, basicamente, na dependência da distância focal com a abertura para raios não 
paraxiais. No caso de uma lente convergente, os raios marginais intersectam o eixo óptico antes dos raios paraxiais 
(Fig. 2.9), enquanto que para uma lente divergente acontece o contrário. A distância entre o foco dos raios marginais 
(FRM) e o foco dos raios paraxiais (FRP) designa-se por aberração esférica longitudinal (AEL). Esta aberração é 
positiva no caso de uma lente convergente e negativa no caso de uma lente divergente.

Figura 2.9 - Aberração esférica para o caso de uma lente convergente. 

FRP: foco dos raios paraxiais; FRM: foco dos raios marginais; 

AEL: aberração esférica longitudinal; AET: aberração esférica transversal; 

CCM: círculo de confusão mínima.
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Em consequência da aberração esférica, a imagem de um objecto pontual, observada num ecrã, não é 
um ponto, como seria de esperar com base na teoria paraxial. Em vez disso, verifica-se a existência de uma 
mancha luminosa, constituída por um núcleo central mais brilhante, rodeado por um halo produzido pelos raios 
marginais. A distância entre o eixo e o ponto em que o raio incide no ecrã tem o nome de aberração esférica 

transversal (AET). Verifica-se a existência de uma posição P, para a qual o diâmetro da mancha luminosa no ecrã 
é mínimo, correspondendo ao chamado círculo de confusão mínima (CCM).

Os raios que passam por zonas consecutivas da lente intersectam-se numa curva chamada cáustica. A 
rotação desta curva, em torno do eixo óptico, dá origem a uma figura tridimensional, a chamada superfície 

cáustica, cujo vértice coincide com o foco paraxial.
A aberração esférica não pode ser completamente eliminada no caso de uma lente simples, qualquer que 

seja a sua forma. Contudo, esta aberração pode ser reduzida, fazendo com que uma ou ambas as superfícies 
da lente tenham uma forma não-esférica, ou realizando uma combinação adequada de lentes convergentes e 
divergentes.

b) Coma

O termo coma deve-se à semelhança com a forma de um cometa da imagem de um objecto pontual situado 
fora do eixo. Este efeito deve-se à variação da ampliação lateral com a altura, medida relativamente ao eixo óptico, 
do ponto de incidência do raio na lente. Em alguns casos, os raios marginais intersectam o plano imagem mais 
próximos do eixo do que os raios paraxiais, sendo então o coma dito negativo. Noutros casos, os raios marginais 
intersectam esse plano mais longe do eixo do que os raios paraxiais (Fig. 2.10a), tendo-se então um coma positivo. 
Cada zona circular da lente forma uma imagem circular chamada círculo comático. O conjunto de todos estes 
círculos comáticos, cujos raios aumentam com o raio daquelas zonas, dá origem a uma figura com a forma de um 
cometa, como se mostra na Fig. 2.10b.

			    	     (a)    			                     (b)

Figura 2.10 – (a) Ilustração de um caso de coma positivo e (b) formação de uma imagem comática 
a partir de um conjunto de círculos comáticos.

	
O coma depende da forma da lente, tal como a aberração esférica. Contudo, os dois tipos de aberração 

diferem em vários aspectos. Em particular, a aberração comática depende do ângulo de obliquidade, não se 
verificando para objectos pontuais situados no eixo óptico. 

c) Astigmatismo

O astigmatismo é uma aberração que tem que ver com a assimetria do cone de raios incidente na lente 
quando o objecto pontual está fora do eixo óptico. Para a descrição desta aberração torna-se conveniente definir 
dois planos: o plano meridional, ou plano tangencial, que contém o raio principal (raio que passa pelo centro das 
pupilas) e o eixo óptico, e o plano sagital, que contém igualmente o raio principal mas é perpendicular ao plano 
meridional. No caso de um feixe de raios paralelos, incidindo obliquamente na lente, a configuração dos raios 
é diferente para aqueles dois planos. A inclinação dos raios é maior no plano meridional, o que determina uma 
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distância focal inferior neste plano, comparada com a distância focal no plano sagital. A diferença astigmática 
entre as duas distâncias focais aumenta rapidamente com a obliquidade dos raios luminosos, ou seja, com a 
distância do objecto ao eixo óptico.

Figura 2.11 – Representação das imagens astigmáticas de um objecto pontual fora do eixo óptico.

Um objecto pontual fora do eixo óptico apresenta duas imagem lineares, como se representa na Fig. 2.11: 
uma imagem primária, situada no foco tangencial tF , e uma imagem secundária, situada no foco sagital sF . 
Se um ecrã for colocado  entre estes dois focos, perpendicularmente ao raio principal, obtém-se em geral uma 
imagem com forma elíptica.  Contudo, sensivelmente a meio caminho entre tF  e sF  essa imagem terá uma forma 
circular, correspondendo ao chamado círculo de confusão mínima. 

d) Curvatura de campo

A imagem de um objecto plano e perpendicular ao eixo só é aproximadamente plana na zona paraxial. 
Quando a abertura de um sistema óptico é finita, a imagem forma-se sobre uma superfície curva; esta aberração 
primária é conhecida por curvatura de campo ou curvatura de Petzval. A imagem de um objecto, assente numa 
calote esférica oS , forma-se sobre uma outra calote esférica, iS , ambas com o mesmo centro O (Fig. 2.12). Quando 
a superfície oS  se torna mais plana, aproximando-se da superfície 'oS , as imagens deslocam-se em direcção à 
lente, ao longo do respectivo raio principal, formando assim uma superfície parabólica, Sp , chamada superfície 
de Petzval. No caso de uma lente divergente, essa superfície curva-se de modo a afastar-se do plano objecto. A 
curvatura de campo pode ser anulada combinando adequadamente lentes convergentes e divergentes.

Figura 2.12 - Ilustração da curvatura de campo.

e) Distorção

A distorção é devida ao facto de a ampliação transversal poder ser função da distância da imagem ao 
eixo óptico. Na verdade, as diferentes zonas da lente têm distâncias focais distintas, o que determina ampliações 
diferentes. A distorção diz-se positiva se a imagem de cada ponto se afasta radialmente do centro, sendo maior 
o afastamento para os pontos mais marginais (Fig. 2.13b). Inversamente, a distorção é negativa se a ampliação 
transversal diminuir com a distância ao eixo, verificando-se uma aproximação de cada imagem pontual ao 
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eixo (Fig. 2.13c). A distorção das lentes delgadas é praticamente nula, mas as lentes espessas, convergentes ou 
divergentes, determinam uma distorção positiva ou negativa, respectivamente.

(a)                                           (b)                                           (c) 

Figura 2.13 - Ilustração da distorção para o caso da imagem de uma rede quadrada (a). 

A distorção pode ser positiva (b) ou negativa (c).

2.9.2. Aberrações cromáticas

As aberrações cromáticas são específicas da luz policromática e manifestam-se em consequência de o índice 
de refracção dos componentes ópticos variar com o comprimento de onda. No caso de uma lente delgada situada 
no ar, a sua distância focal é dada por:
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sendo 1R  e 2R  são os raios de curvatura das superfícies da lente e n o seu índice de refracção. Como n depende 
do comprimento de onda, o mesmo acontece com a distância focal (Fig. 2.14). A distância axial entre dois pontos 
focais extremos numa dada gama de frequências chama-se aberração cromática axial (ACA). Existe uma posição 
entre esses pontos focais extremos em que a dimensão da mancha luminosa, correspondente à imagem de um 
objecto pontual distante, é mínima. Essa posição corresponde ao círculo de confusão mínima (CCM).

Figura 2.14 – Ilustração da aberração cromática. 

No caso de uma lente convergente, como na Fig. 2.14, o foco correspondente à luz azul, FA , encontra-se à 
esquerda do foco correspondente à luz vermelha, FV , dizendo-se então que a aberração cromática axial é positiva. 
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No caso de uma lente divergente, as posições desses pontos focais são invertidas, tendo-se então uma aberração 
cromática axial negativa.

Pares acromatas

A sobreposição dos pontos focais extremos  FA   e  FV  , na Fig. 2.14, é possível associando uma lente convergente 
com uma outra divergente, o que resulta num par dito acromata. Se as duas lentes estiverem separadas por uma 
distância d, a distância focal do par é dada, como se mostra no problema PR 2.9, por:
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onde f1 e f2 são as distâncias focais das lentes. A condição de acromaticidade do par para o vermelho e para o azul 
implica:
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Usando a notação 
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e supondo que as duas lentes estão em contacto (d = 0), a condição (2.38) permite obter o seguinte resultado:
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A distância focal da lente composta pode ser especificada para a luz amarela (AM), intermédia entre o azul 
e o vermelho. Para esse comprimento de onda tem-se:
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Igualando os segundos membros das Eq.s (2.40) e (2.41) obtém-se:
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			                      		  (2.42)

Atendendo a que o índice de refracção diminui com o comprimento de onda na região visível do espectro, 
tem-se nA > nV . Por outro lado, como nAM > 1, conclui-se da Eq. (2.42) que uma das duas lentes do par acromata 
deve ser divergente, enquanto a outra deve ser convergente.

Mostra-se no problema PR 2.15 que também possível construir um par acromata a partir de duas lentes 
iguais, separadas entre si por uma certa distância d.
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2.10. Problemas resolvidos 

PR 2.1. Considerando a geometria da Fig. 2.1, e o princípio do tempo mínimo de Fermat, obtenha a lei da reflexão dada 
pela Eq. (2.1).

Resolução
Atendendo a que o tempo é dado pela razão distância/velocidade e que os raios viajam com velocidade constante 

num meio uniforme, o problema da minimização do tempo de percurso, imposto pelo princípio de Fermat, pode ser						               ___      ___
substituído pelo problema da minimização da distância L = AP + PA' (ver a Fig. 2.1). Dado que se desconhece a 			                ___           ___		       ___
posição exacta do ponto P, faremos OP = x e PO' = l − x, sendo l = OO'. 

Considerando a geometria da Fig. 2.1 e usando o teorema de Pitágoras, tem-se a seguinte expressão para a 
distância L:

           
2222 )(' xldxdL -+++= 		               				          (1)

A distância mínima percorrida pelo raio é obtida derivando L em ordem a x e igualando a expressão resultante 
a zero:
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Considerando os triângulos OAP e O’A’P, assim como os ângulos iθ  e rθ  da Fig. 2.1, tem--se que a Eq. (2) 
permite obter o resultado:

ri sensen θθ = sen  sen 								             (3)

Conclui-se, assim, que deve ter-se

ri θθ = 							               		       (4)

PR 2.2. Considerando a geometria da Fig. 2.4 e asumindo a aproximação paraxial, obtenha os resultados dados 
pelas Eq.s (2.2)-(2.4) para a reflexão num espelho esférico.

Resolução
Na aproximação paraxial, considera-se que o ângulo, θ , entre o raio luminoso e o eixo óptico é suficientemente 

pequeno. Nestas circunstâncias, tem-se

cos θ ≈ 1,	
e

tanθ ≈ senθ ≈ θ

Com base na geometria da Fig. 2.4 e usando a aproximação paraxial, tem-se: 
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R
hVCPtg i == θ)ˆ( tan ;					            		        (1)

	 			                                  			 

f
hVFPtg i == θ2)ˆ( tan 							            (2)

onde CPR = CP  é o raio e FVf = FV  é a distância focal do espelho.

Por convenção, considera-se que R é negativo quando o centro de curvatura C se encontra à frente do 
espelho (i.e., o espelho é côncavo). Por outro lado, R é positivo quando C se situa atrás do espelho (i.e., o espelho 
é convexo). No caso da Fig. 2.4, tem-se  |R| = −R e das Eq.s (1) e (2) conclui-se que

2
Rf -= 						             	  		        (3)

                             				                         �            �           �                �                   
Considerando os triângulos OMC e O’M’C e fazendo s = MV, s' = M'V,  f = FV e |R| = CV, tem-se:
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Como  tg(OĈM) = − tg(O'ĈM') , conclui-se que 
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Por outro lado, considerando os triângulos VPF e FM'O' , tem-se

f
hPFVtg =)ˆ( tan ,						             		        (7)
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Como )'ˆ'()ˆ( MFOtgPFVtg -=tg tg , tem-se
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Igualando as Eq.s (6) e (9) e rearranjando a expressão obtém-se o resultado
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Este resultado confirma a Eq. (2.2).
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Dos triângulos OMV e O’M’V tem-se

s
hMVOtg =)ˆ( tan ,								            (11)
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Como )'ˆ'()ˆ( MVOtgMVOtg -=tg tg , conclui-se que
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Este resultado confirma a Eq. (2.4) para a ampliação lateral da imagem, lA  .

PR 2.3. Tendo por base a geometria da Fig. 2.5, e usando o princípio do tempo mínimo de Fermat, derive a lei de 
Snell para a refracção, dada pela Eq. (2.5).

Resolução
O tempo de percurso entre os pontos A e A’ na Fig. 2.5 é dado por
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Considerando a geometria da Fig. 2.5 e usando o teorema de Pitágoras, tem-se
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onde 'OOl =OO . Em ordem a minimizar t(x), impõe-se a condição dt/dx = 0:
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Com base na expressão anterior e considerando a geometria da Fig. 2.5 pode-se obter o resultado

ti nn θθ sensen 21 = 					                        		       (4)

A Eq. (4) corresponde à lei de Snell para a refracção.

PR 2.4. Considerando a geometria da Fig. 2.6 e a lei da refracção na aproximação paraxial, obtenha a Eq. (2.7), 
que descreve o efeito da refracção numa superfície esférica de raio R.

Resolução
Usando a lei de Snell para a refracção no ponto P da Fig. 2.6, tem-se:

ti nn θθ sensen 21 = 					           			         (1)
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Na aproximação paraxial, esta equação pode-se escrever na forma

ti nn θθ 21 = 						           	  		        (2)

Usando o teorema do ângulo exterior, tem-se da Fig. 2.6 que:

γαθ +=i 						            			         (3)

e
βγθ -=t 						            			         (4)

Por outro lado, a aproximação paraxial permite escrever
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A substituição das Eq.s (3)-(5) na Eq. (2) permite obter o resultado
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que corresponde à Eq. (2.7).

PR 2.5. As faces de uma lente biconvexa delgada, com um índice de refracção nv  = 1.5, têm um raio de curvatura
|R| = 10  cm. A lente está colocada numa das paredes laterais de um tanque cheio de água (nag = 1.33). Um objecto 
é colocado, no lado de fora do tanque, sobre o eixo da lente, a uma distância de 50.0  cm desta. Determine a posição 
da imagem.

Resolução
Usando a Eq. (2.7) na refracção ar/lente, tem-se
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Aplicando a mesma relação na refracção lente/água, tem-se
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Se se desprezar a espessura da lente, tem-se '12 ss -= . Nestas condições, somando membro a membro as 
relações anteriores, tem-se
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						           (3)

Usando os valores nar = 1,  nv = 1.5,  nag = 1.33,  R1 = +10.0cm,  R2 = -10.0 cm  e  s1 = +50.0 cm, obtém-se que 

a imagem se forma na água, a uma distância  s2' = +29.1cm da lente.
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PR 2.6. Um sistema óptico produz uma imagem real de um objecto real, situada a uma distância de 15 cm. Uma 
lente biconvexa, com um índice de refracção n =1.5 e raios de curvatura 1R = 10 cm e 2R  = 15 cm, é colocada a 
10 cm do sistema óptico. Calcule:

a)	 A distância focal da lente;
b)	 A distância entre a lente e a imagem final. Caracterize essa imagem. 

Resolução
a) A distância focal da lente é dada pela Eq. (2.11):
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Substituindo os valores R1 = +10 cm e R2 = −15 cm, tem-se
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b) O objecto original é real  ( s1 > 0) e a imagem produzida pelo sistema óptico também é real (s1' > 0). Essa ima-
gem constitui o objecto para a lente. A distância a que se encontra esse objecto da lente é dada pela equação de ligação:

            s2 = d −s1' = 10 − 15 =  −5 cm < 0  						           (3)

pelo que se trata de um objecto virtual para a lente. Usando a equação das lentes delgadas, tem-se
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pelo que a imagem produzida pela lente é real. Por outro lado, tem-se que a ampliação total devida ao sistema óptico 
e à lente é dada por:
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pelo que a imagem é invertida.

PR 2.7. Considere um objecto com 2 cm de altura colocado a uma distância de 30 cm de uma lente biconvexa com 
distância focal f = 20 cm. No outro lado da lente está colocado, a 100 cm desta, um espelho côncavo de raio R = 60 cm. 

a)  Determine a posição da imagem dada pela lente L.
b)  Qual a posição da imagem final formada após a reflexão no espelho? 
c)  Caracterize a imagem final formada após reflexão no espelho.

Resolução
a) Tem-se
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b) A distância a que se encontra o objecto para o espelho é dada pela equação de ligação:

            s2 = d −s1' = 100 − 60 = 40 cm							            (2)

Por outro lado, usando a equação para a formação de imagem pelo espelho, tem-se:
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c) Dado que s2' > 0 , a imagem produzida pelo espelho é real. Por outro lado, tem-se que a ampliação total é dada 
por
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pelo que a imagem final formada após reflexão no espelho é direita e seis vezes maior que o objecto original.

PR 2.8. Usando a aproximação paraxial, obtenha:
a) a Eq. (2.15) para a matriz de refracção numa superfície esférica de raio R, que constitui a fronteira entre 

dois meios com índices de refracção n1  e n2 ;
b) a Eq. (2.18) para a matriz de transferência num meio homogéneo de espessura d.

Resolução
a) Aplicando a lei de Snell no ponto A da Fig. 2.8, e usando a aproximação paraxial, tem-se:

n1 θi = n2 θt							             		        (1)		                  

ou, considerando os ângulos indicados na mesma figura:

n1 (γ + ϕ) = n2 (γ'' + ϕ)	  				          		       (2)

onde  γ  e  γ''  representam os ângulos que os raios incidente e transmitido fazem com o eixo óptico, enquanto que  ϕ  é 
o ângulo entre esse eixo e a normal à superfície no ponto A. Atendendo à geometria da Fig. 2.8 tem-se  ϕ = x1 / R1 , pelo 
que a Eq. (2) fica:
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Resolvendo esta equação em ordem a  γ'' obtém-se:
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A Eq. (4) pode ser escrita na forma:  
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onde
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nnD -
= 	           				               	       		       (6)

é a potência do dioptro. 
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Atendendo a que a altura do raio relativamente ao eixo óptico não varia aquando da refracção no ponto A, 
tem-se:

x1  = x1''							             		       (7)

onde as linhas indicam que se está junto à fronteira mas no meio de transmissão, cujo índice de refracção é  n2 . 

As Eq.s (5) e (7) podem ser escritas na seguinte forma matricial:
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A matriz
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é a matriz de refracção no ponto A.

b) Considerando a geometria da Fig. 2.8, pode-se verificar que, quando o raio vai desde o ponto A até ao 
ponto B, o ângulo que ele faz com o eixo óptico não varia, tendo-se então

γ'' =  γ2''						                         		     (10)

Por outro lado, a altura do raio relativamente ao eixo óptico varia desde x1'' até  x2'', de acordo com a 
expressão:

x2'' =  x1'' + dγ''						           	       	     (11)

onde d é a espessura da lente. As Eq.s (10) e (11) podem ser escritas na seguinte forma matricial:
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A matriz

T = 







10

1 d
						            		  (13)  

é a matriz de transferência, que representa a progressão do raio desde o ponto A até ao ponto B na Fig. 2.8.

PR 2.9. Usando a teoria matricial, obtenha uma expressão para a distância focal de uma lente composta, 
constituída por duas lentes delgadas, com distâncias focais  f1  e  f2  , situadas no ar e separadas entre si por uma 
distância d. 

Resolução
A matriz correspondente à lente composta, Lc , é dada pelo produto de três matrizes: duas semelhantes 

à Eq. (2.25), e outra semelhante à Eq. (2.18), correspondente à progressão do raio entre as duas lentes simples. 
Assim, tem-se
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Comparando a matriz anterior com a matriz de uma lente simples, dada pela Eq. (2.25), tem-se que o 
inverso da distância focal da lente composta é dado por:

2121
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d
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-+= 								            (3)		

No caso d = 0, tem-se:
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+= 								             (4)

Este resultado pode ser facilmente generalizado para o caso de um conjunto arbitrário de lentes.

PR 2.10. Considere um objecto com altura h, situado a uma distância s de uma lente delgada convergente, com 
uma distância focal f. No lado oposto à lente, a uma distância s’ desta, encontra-se um ecrã. Usando o formalismo 
matricial, obtenha

a) a relação que deve existir entre s, s’ e f, para que a imagem do objecto se situe sobre o ecrã;
b) a relação entre a ampliação lateral da imagem e as distâncias s e s’.

Resolução
a) A matriz de sistema consiste no produto de três matrizes, correspondentes (1) à transferência no ar desde 

o objecto até à lente, (2) à acção da lente e (3) à transferência no ar desde a lente até ao plano de formação da 
imagem. Usando as Eq.s (2.18) e (2.25) para as matrizes de transferência e da lente delgada, tem-se
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Efectuando o produto das matrizes, obtém-se
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A distância a que se forma a imagem, s’ , é determinada fazendo B = 0, ou seja,

0'' =-+=
f

ssssB 								             (3)

ou   

fss
1

'
11

=+ 									             (4)

Este resultado está de acordo com as Eq.s (2.10) e (2.11).
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b) A ampliação lateral da imagem é dada, nas mesmas circunstâncias, pelo elemento A da matriz de sistema:

s
s

f
sAAl

''1 -=-== 							            (5)

Este resultado está de acordo com a Eq. (1.12).

PR 2.11. Considere um objecto situado no ar, à distância de 40 cm de um bloco de vidro (n = 1.5) com 1 m de 
comprimento. A face desse bloco do lado do objecto tem uma forma convexa esférica, com um raio R = 10 cm. 
Usando o método matricial, caracterize a imagem desse objecto que se forma no bloco de vidro.

Resolução
Neste caso, a matriz de sistema consiste no produto de três matrizes, correspondentes (1) à propagação do 

raio no ar desde o objecto até ao bloco, (2) à refracção na superfície esférica e (3) à propagação do raio no vidro desde 
a superfície esférica até à imagem. Usando as Eq.s (2.15) e (2.18) para as matrizes de refracção e de transferência, 
tem-se
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onde s’ é a distância da imagem ao vértice V . Efectuando produto de matrizes, obtém-se

















--

--
=








=

3
2

30
1

3
'240

30
'1 ss

DC
BA

S
4030

30

S 						           (2)

A distância s’ é determinada fazendo B = 0, ou seja,

0
3

'240 =-=
sB 40 	   ou	 s’ = 60 cm.					          (3)

Por outro lado, a ampliação da imagem é dada, nas mesmas circunstâncias, pelo elemento A:

1
30

'1 -=-=
sA

30
                     							            (4)             

Conclui-se que a imagem é formada dentro do bloco de vidro, 60 cm à direita do vértice V (s’  é positivo), 
está invertida (A é negativo) e tem o mesmo tamanho do objecto (|A| = 1).  

PR 2.12.
a) Partindo da Eq. (2.30) e assumindo que o determinante da matriz de sistema é unitário derive a Eq. (2.31). 
b) Mostre que a solução da Eq. (2.31) é dada pela Eq. (2.32).

Resolução
a)  Considere-se um raio que entra no sistema a uma altura x0 e fazendo um ângulo γ0 relativamente ao eixo 

óptico. Para determinar os valores (xp , 
γp ) desses parâmetros à saída do p-ésimo estágio, deve-se fazer actuar a 

matriz ABCD p vezes. A relação entre esses parâmetros à saída do p-ésimo e do (p+1)-ésimo estágios é dada por:
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A Eq. (1) pode ser substituída pelas seguintes relações:

ppp BAxx γ+=+1 Ax 	           				          			         (2)

ppp DCx γγ +=+1  Cx 					           			        (3)

Pode-se obter uma equação que governa a evolução da altura do raio, xp 
, eliminando o ângulo γp  

entre as Eq.s 
(2) e (3). Da Eq. (2) tem-se:

B
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= +1γ
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						            		       (4)

Substituindo  p  por  p+1 na Eq. (4) tem-se:
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						           		       (5)

Substituindo (4) e (5) na Eq. (3), obtém-se a equação:

0)( 12 =++- ++ ppp xxDAx 					           		       (6)

onde se assumiu  |S| = AD −BC = 1 . 

b) Considere-se que a solução da Eq. (6) é do tipo:

p
p Kxx 0= 						           			        (7)

sendo K uma constante. Substituindo a Eq. (7) na Eq. (6) obtém-se a seguinte equação algébrica para o parâmetro K:

01)(2 =++- KDAK 							            (8)

cujas soluções são:
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Pode-se definir uma nova variável, ψ , na forma:
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Fazendo a substituição
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na Eq. (9), obtém-se

)exp( ψiK ±=  					          			      (12)

Deste modo, a Eq. (7) pode ser apresentada na forma

xp = x0 exp(± ipψ).			                      	       			      (13)

Pode-se escrever uma solução geral a partir da combinação linear das soluções anteriores correspondentes 
aos sinais mais e menos. Essa solução geral pode ser dada na forma:

xp = xmaxsen(pψ + ψ0) 						                          (14)

onde  xmax  e  ψ0  são constantes determinadas a partir das condições iniciais do raio.

PR 2.13. Considere uma sequência de lentes delgadas idênticas, cada uma com distância focal f, espaçadas de uma 
distância constante d. Obtenha o valor máximo desse espaçamento que garante uma trajectória estável para os 
raios paraxiais.

Resolução
O sistema unitário da sequência de lentes é constituído por uma distância d no espaço livre, seguido por 

uma lente. A matriz para esse sistema unitário é dada por

	









≡














--=





















-=

DC
BA

f
d

f

dd

f
11

1

10
1

11
01

S 				         (1)

Tem-se  A = 1  e  D = 1 − d / f , pelo que a condição de estabilidade

1
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≤
+ DA  								             (2)

fica 

1
2

1 ≤-
f

d ,									             (3)

ou seja, deve-se ter

fd 40 ≤≤ 									             (4)

Assim, o valor máximo do espaçamento entre as lentes que garante uma trajectória estável para os raios 
paraxiais é igual a quatro vezes a distância focal da lente.

PR 2.14. Uma lente de vidro crown delgada e biconvexa tem faces com raios de curvatura de 10.0 cm. Quando se 
encontra no ar, forma-se uma imagem com luz amarela a uma distância de 20.0 cm dessa lente. Atendendo a que os 
índices de refracção para a luz azul e vermelha são  nA = 1.501 e  nV = 1.509, respectivamente, calcule a extensão da 
aberração cromática axial correspondente a estes comprimentos de onda.
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Resolução
A equação de uma lente delgada situada no ar é dada por
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Diferenciando a Eq. (1) e considerando que, para uma dada posição do objecto, s é uma constante, tem-se
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O sinal menos no resultado anterior significa que, como o índice de refracção n diminui quando o 
comprimento de onda aumenta, a distância s’  deve aumentar com o comprimento de onda. 

Usando para  s’  o valor de referência correspondente à luz amarela (s’ = 20.0 cm) e considerando    
∆n = nV − nA = 8x10−3 ,  R1 = +10 cm  e  R2 = −10 cm, tem-se que a aberração cromática axial é dada por
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PR 2.15. Considere duas lentes delgadas convergentes e iguais, separadas por uma distância d. Obtenha uma 
expressão para essa distância

a) que garante a mesma distância focal do par para a luz com comprimentos de onda Al  e Bl . 

b) que satisfaz a condição da alínea a) quando 2/0 lll ∆-=A   e  2/0 lll ∆+=B ,  com 0ll <<∆ <<  .

Resolução
a) Usando a Eq. (3) do problema PR 2.9, tem-se que a distância focal do par de lentes é dada por
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onde )(0 lf  é a distância focal de cada uma das lentes para o comprimento de onda λ. Pretende-se ter )()( BA ff ll = , 
pelo que deverá ser:
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Da Eq. (2) obtém-se o resultado
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b) Nas condições referidas, tem-se:
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Substituindo as Eq. (4) e (5) na Eq. (3) e desprezando no numerador o termo em 2)( l∆ , tem-se o resultado

)( 00 lfd = . 									         (6)

Ou seja, as lentes devem estar separadas de uma distância igual à distância focal, calculada para o comprimento 
de onda central 0l .

2.11. Problemas propostos

PP 2.1. Um objecto está situado à distância de 10 cm do vértice de um espelho convexo com uma distância focal 
de 8 cm. Determine a posição e a ampliação lateral da imagem. 

PP 2.2. Um objecto de 2 cm de altura está situado 15 cm à frente de um espelho esférico (a) côncavo e (b) convexo, com 
um raio |R| = 10 cm. Determine a posição e a natureza da imagem em cada caso.

PP 2.3. Um objecto com 1 cm de altura encontra-se, direito, 3 cm à frente de um espelho côncavo, com um raio  
|R| = 12 cm. Determine a posição e a ampliação lateral da imagem resultante e faça o correspondente diagrama 
de raios.

PP 2.4. Derive uma expressão para o deslocamento lateral sofrido por um raio que incide segundo um ângulo ϕ  
numa lâmina transparente de faces paralelas, com um índice de refracção n e uma espessura d, situada no ar. 
Obtenha esse deslocamento lateral para os casos i) ϕ = 0 e ii) ϕ = p/2.

PP 2.5. Coloca-se uma lâmina transparente de faces paralelas, com índice de refração n=1.5 e espessura d=3mm, 
à esquerda de uma lente convergente, de distância focal  f = 50 cm. A que distância (à esquerda) da lâmina deve 
ser colocada uma fonte pontual, para que o feixo emergente da lente seja paralelo ao eixo óptico? Assuma a 
aproximação paraxial na resolução do problema.

PP 2.6. Uma esfera de vidro, com um índice de refracção n, apresenta uma cavidade esférica concêntrica, cheia de 
ar, com um raio (r) igual à espessura da camada de vidro. Na superfície interna da esfera encontra-se um objecto 
pontual, que é observado do exterior, na direcção diametralmente oposta. Mostre que a imagem assim observada 
está a uma distância r(n −1) / (3n −1) do objecto.

PP 2.7. Uma esfera de vidro (n = 1.5) de raio R tem metade da sua superfície coberta por um filme reflector. Um 
pequeno objecto é colocado no eixo da esfera a uma distância 2R da superfície não espelhada.  Encontre a posição 
da imagem formada pelas superfícies refractiva e espelhada.
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PP 2.8. Considere uma lente delgada convergente com distância focal  f . Mostre que a distância mais curta entre 
um objecto (real) e a sua imagem (também real)  é  4f.

PP 2.9. Um objecto com a altura de 1cm está situado a 15 cm de uma lente delgada, que tem uma distância focal      
f = 10cm. Encontre a posição e as características da imagem correspondente.

PP 2.10. Mostre que os elementos da matriz de sistema para uma lente espessa, L, dada Eq. (2.23), são dados pelas 
seguintes expressões:   a11 = 1−dD1 / n2  ,  a12 = dn1 / n2  ,  a21 = [dD1D2 / n2  − D1 − D2] / n3   e   a22 = (n1 / n3)[1  − dD2 / n2]. 

Mostre que o determinante dessa matriz é  |L| = a11 a22 − a12 a21  = n1 / n3

PP 2.11. Mostre que a matriz representando a reflexão num espelho esférico côncavo de raio R é dada por:












= 12

01

R
E

PP 2.12. Resolva o problema PR 2.5 usando o método matricial.

PP 2.13. Uma fonte pontual de luz encontra-se a 40 cm de uma lente convergente, com uma distância focal            
f = 20 cm. Um bloco grande de vido (n = 1.5), apresentando uma face plana perpendicular ao eixo óptico, 
encontra-se no lado oposto da lente, a uma distância de 30 cm desta. Usando o método matricial, determine a 
que distância da lente se forma a imagem da fonte.

PP 2.14. Uma cuba cheia de água (índice de refracção 4/3) apresenta, numa das suas faces verticais, uma janela 
semi-esférica, com um raio de 20 cm. Um feixe colimado de luz, paralelo ao eixo da semi-esfera, incide na cuba. 
Desprezando a influência do vidro da janela na trajectória dos raios luminosos, calcule:

a) A potência do dioptro e as distâncias focais objecto e imagem.
b) A distância do vértice do dioptro a que se situa o foco dos raios marginais.
c) A distância que separa o foco dos raios marginais do foco dos raios paraxiais (aberração esférica 

longitudinal). 
d) O diâmetro da mancha luminosa observada no plano focal dos raios paraxiais (aberração esférica 

transversal).

PP 2.15. a) Uma lente de vidro crown e outra de vidro flint são coladas por forma a constituírem um par acromata. 
Mostre que as distâncias focais das lentes crown e flint satisfazem a equação:

0=+ cffc ff κκ

l
l

κ ∆
-

=
d
dn

n 1
1

0

dn

sendo n0  o valor do índice de refracção do vidro no centro do espectro visível e ∆λ o intervalo de comprimentos 
de onda desse espectro.

b) Para o vidro crown tem-se cκ = 0.0169, enquanto que para o vidro flint é fκ
 
= 0.0384. Mostre que se deve 

usar uma lente convergente de vidro crown e uma lente divergente de vidro flint para se obter um par acromata 
convergente.
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Capítulo 3

INTERFERÊNCIA

As soluções da equação de onda dada pela Eq. (1.15) satisfazem o princípio da sobreposição, segundo o qual 
o campo eléctrico total E



, em qualquer ponto do espaço onde duas ou mais ondas se sobrepõem, é igual à soma 
vectorial dos campos eléctricos dessas ondas. O fenómeno da interferência consiste na interacção entre essas ondas. 
Dessa interacção resulta um padrão em que a distribuição da intensidade difere da soma das intensidades das ondas 
intervenientes, observando-se a existência de bandas brilhantes e escuras, chamadas franjas de interfrência. 

O primeiro registo do fenómeno de interferência foi realizado por Robert Boyle (1627-1691), quando 
observou os chamados anéis de Newton. A designação destes anéis deve-se ao facto de Newton ter efectuado 
também uma série de experiências relativas a este efeito. Contudo, as primeiras experiências envolvendo 
propriamente os efeitos da interferência da luz foram realizadas por Thomas Young (1773-1829) em 1802. Os 
resultados destas experiências contradiziam a teoria corpuscular da luz de Newton, pelo que foram rejeitados pela 
generalidade dos cientistas da época. Dez anos mais tarde, Fresnel realizou uma nova série de experiências que 
confirmaram os resultados de Young e que conduziram à consagração definitiva da teoria ondulatória da luz, em 
detrimento da teoria corpuscular.

O fenómeno da interferência encontra um vasto campo de aplicação no âmbito da chamada intererometria 
ótica. Os interferómetros são dispositivos capazes de medir pequenas variações de alguma grandeza física, através 
da análise das alterações verificadas num padrão de interferência criado por dois ou mais feixes. Eles podem 
ser usados, por exemplo, para testar a qualidade de uma superfície ou de um filme dieléctrico; podem também 
ser usados para medir distâncias da ordem das dezenas ou centenas de metros, como acontece no estudo da 
estabilidade de grandes estruturas. A grandeza medida nestes casos é, geralmente, o caminho óptico, isto é, o 
produto do caminho geométrico pelo índice de refracção do meio. 

3.1. Interferência de duas ondas

De acordo com o princípio da sobreposição, se num dado ponto do espaço se verificar a presença de vários 
campos, 1E



, 2E


, ..., o campo óptico resultante, E


, é dado por:

	 ...21 ++= EEE


							                 	   (3.1)

Na prática, a grandeza que se mede é a intensidade, que é proporcional à média temporal do quadrado do 
módulo do campo. No caso de haver apenas duas ondas, tem-se:
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( ) ( ) 21
2

2
2

12121
2

2 EEEEEEEEE


⋅++=+⋅+= 		            	   (3.2)

Dado que apenas nos interessam os valores relativos da intensidade, considera-se a seguir que a intensidade 

é dada simplesmente na forma 
2

EI


= . A Eq. (3.2) pode ser escrita, então, na forma:

2121 2 EEIII


⋅++= 						                	   (3.3)

onde 1I  e 2I  são as intensidades de cada uma das ondas interferentes. Toda a informação acerca da interferência 
está contida no terceiro termo da Eq. (3.3). A interferência pode ser construtiva ou destrutiva, consoante o sinal 
deste termo seja positivo ou negativo, respectivamente. Se esse termo for nulo em todos os pontos do espaço, isso 
significa que as ondas não interferem, pelo que se tem uma distribuição uniforme da intensidade. Uma condição 
necessária para que o termo de interferência na Eq. (3.3) seja diferente de zero é que os campos eléctricos das 
duas ondas não sejam ortogonais.

Considere-se duas ondas planas polarizadas linearmente, na forma:

( )11011 cos εω +⋅-= rktEE




01 					             		  (3.4a)

( )22022 cos εω +⋅-= rktEE 




02
					             	                 (3.4b)

onde 1ε  e 2ε  são as fases iniciais. Neste caso, o termo de interferência na Eq. (3.3) é dado por:

δcos2 02012112 EEEEI


⋅=⋅= 01 0212
				             	                   (3.5a)

 
onde 

2121 εεδ -+⋅-⋅= rkrk 







 						                      (3.5b)

é a diferença de fase entre as duas ondas interferentes, resultante da diferença de percursos ópticos, )( 21 rkrk 







⋅-⋅ , 
e da diferença de fase inicial, )( 21 εε - . Se esta última contribuição for constante, .21 const=-εε , diz-se que as 
fontes das duas ondas são coerentes.

Quando os campos 01E


01  e 02E


02  são ortogonais o termo de interferência é nulo, pelo que se tem uma 
distribuição uniforme da intensidade. Quando esses campos são paralelos, a distribuição da intensidade pode ser 
escrita a partir das Eq.s (3.3) e (3.5) na forma:

δcos2 2121 IIIII ++= 						                	   (3.6)

Se as duas ondas tiverem a mesma amplitude, 21 II =  e a Eq. (3.6) fica:

2
cos4 2

1
δII = 							                 	   (3.7)

Neste caso, a intensidade resultante é 4I1 , quando se verifica uma interferência totalmente construtiva, 
correspondente a uma diferença de fase entre as duas ondas de pδ 2p=  ( ,...2,1,0 ±±=p ). Por outro lado, a 
intensidade resultante é nula no caso de uma interferência totalmente destrutiva, correspondente a uma diferença 
de fase pδ )12( += p . O princípio da conservação da energia implica que, se a intensidade em cada um dos feixes 
for 1I , a intensidade resultante seja 12I . Contudo, em consequência do fenómeno de interferência, a distribuição 
espacial da intensidade não é uniforme, variando entre um valor máximo ( 14I ) e um valor mínimo (zero).
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3.2. Representação complexa

Em muitas situações, é possível ignorar a natureza vectorial das ondas luminosas. Uma dessas situações 
ocorre, por exemplo, quando todas as ondas luminosas se propagam na mesma direcção e possuem o mesmo 
plano de vibração. Nestas circunstâncias, a análise da sobreposição dessas ondas pode ser facilitada usando a 
representação complexa para o campo eléctrico.

Considere-se a situação em que os campos eléctricos das ondas interferentes são colineares, com a mesma 
frequência e dados na forma escalar por:

E1 = E01 e
i(ωt+a1 )							               	 (3.8a)

E2 = E02 e
i(ωt+a2 )						                                       (3.8b)

O campo resultante é dado por:

E = E1 + E2 = E01 e
ia1 + E02 e

ia2eiωt = E0e
ia eiωt 				                      (3.9)

onde

E0e
ia = E01 e

ia1 + E02 e
ia2						              	 (3.10)

é a amplitude complexa da onda resultante, dada pela adição das amplitudes complexas das ondas iniciais. 

O módulo, 0E , e a fase, α , da amplitude complexa do campo resultante podem ser expressos em função 
dos parâmetros correspondentes das ondas individuais. Atendendo a que

( )( )*00
2
0

αα ii eEeEE = 						              	 (3.11)

tem-se

( )( )*02010201
2
0

2121 αααα iiii eEeEeEeEE ++= 01 02 0201 	

	     ( ))()(
0201

2
02

2
01

2121 αααα --- +++= ii eeEEEE01 02 0201 	                     			   (3.12)

Usando a relação de Euler, pode-se escrever a Eq. (3.12) com o aspecto
		

)cos(2 210201
2
02

2
01

2
0 αα -++= EEEEE 01 0102 02 				            	 (3.13)

resultado que é equivalente ao da Eq. (3.6). 

Por outro lado, separando as partes real e imaginária da Eq. (3.10), tem-se

2021010 coscoscos ααα EEE += 01 02
					                    (3.14a)

2021010 sensensen ααα EEE += 01 02 				          	               (3.14b)
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Dividindo membro a membro as equações anteriores, obtém-se o seguinte resultado para tga:

										          (3.15)
202101

202101

coscos
sensentan

αα
ααα

EE
EE

+
+

= 01

01

02

02

Os campos dados pelas Eq.s (3.8) e (3.9) encontram-se representados por vectores no plano complexo na 
Fig. 3.1. 

Figura 3.1 – Representação da soma dos campos 1E


 e 2E


 no plano complexo.

Os resultados anteriores podem ser generalizados para o caso da sobreposição de um número arbitrário, N, 
de ondas harmónicas. Nesta situação, a amplitude complexa da onda resultante é dada por

∑
=

=
N

j

i
j

i jeEeE
1

00
αα 							               	 (3.16)

sendo 0E  e α  dados por

∑∑∑
> ==

-+=
N

ji

N

j
ijij

N

j
j EEEE

1
00

1

2
0

2
0 )cos(2 αα 				            	 (3.17)

e
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j
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cos

sen
tan

α

α
α 							       (3.18)
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3.3. Interferência por divisão da frente 
de onda

Uma maneira de ter duas ondas em condições de interferirem, consiste em obter essas ondas a partir de 
partes espacialmente distintas de uma mesma frente de onda original. Nisto consiste a chamada interferência por 

divisão da frente de onda. 

3.3.1. A experiência de Young

Para ilustrar a interferência por divisão da frente de onda, examinaremos em seguida a chamada experiência 

de Young, cuja representação esquemática se apresenta na figura 3.2. 

Considere-se uma onda plana monocromática que incide numa fenda estreita S. Desta fenda emerge uma 
onda cilíndrica, que incide, por sua vez, em duas outras fendas, 1S  e 2S , estreitas e pouco espaçadas entre si. 
As duas fendas obtêm amostras espacialmente distintas da frente de onda originada em S. Numa situação de 
simetria, essas amostras estão exactamente em fase e as fendas comportam-se como duas fontes secundárias 
coerentes. Analisaremos a interferência produzida pelas duas ondas num plano situado a uma distância D do 
plano que contém as fendas 1S  e 2S .

Figura 3.2 - Geometria da experiência de Young.

A luz proveniente de  S1  percorre uma distância r1 , enquanto que a luz vinda de S2 percorre uma distância 
r2 , até chegarem ambas ao ponto P no plano de observação. Assumindo as condições de simetria acima referidas, 
a diferença de fase entre as duas ondas no ponto P deve-se apenas à diferença de percursos, sendo dada por:

)( 12 rrk -=δ 						           	         	 (3.19)

Tem-se uma interferência completamente construtiva para pδ 2p=  ( ,...2,1,0 ±±=p ), o que corresponde 
a uma diferença de percursos:

lprr =- 12 							                       (3.20)
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Suponhamos que a distância D é muito superior à altura y do ponto de observação, medida relativamente 
ao eixo dos x, i. e., Dy« . Nestas condições, a geometria da Fig. 3.2 permite escrever:

D
y

h
rr

=≈
-

= 1
1

1 tan

2

sen θθ 			     		     	                (3.21a)                   

e

D

hy

h
rr 2tan

2

sen 2
2

2

+
=≈

-
= θθ 					                    (3.21b)

Somando membro a membro as equações anteriores e assumindo que yh« , tem-se

D
yhrr =- 12
 yh 						                          	 (3.22)

Assumindo que as duas fendas são iguais, a distribuição da intensidade no plano de observação é dada a 
partir das Eq.s (3.7), (3.19) e (3.22) na forma:







=

D
hyII

l
p2

0 cos4  πhy
							               	 (3.23)

onde  I0  é a contribuição de uma única fenda.
	
Atendendo às Eq.s (3.20) e (3.22), tem-se que um máximo de intensidade se encontra a uma altura

lp
h
Dyp = 							               	 (3.24)

O espaçamento entre dois máximos consecutivos é:

l
h
Dyyy pp =-=∆ +1

					          	         	 (3.25)

Verifica-se da Eq. (3.25) que o espaçamento entre as franjas de interferência é directamente proporcional 
à distância a que se encontra o plano de observação e inversamente proporcional à separação entre as fendas S1  
e  S2  da Fig. 3.2. 

A análise feita a propósito da experiência de Young pode ser facilmente adaptada a outros interferómetros por 
divisão da frente de onda, Descreve-se a seguir três destes interferómetros: o espelho duplo de Fresnel, o bi-prisma 
de Fresnel e o espelho de Lloyd.

3.3.2. O espelho duplo de Fresnel

O espelho duplo de Fresnel é constituído por dois espelhos planos que fazem entre si um pequeno ângulo θ  
(Fig. 3.3). A luz proveniente de uma fonte S é reflectida nos dois espelhos, de tal modo que as ondas reflectidas 
parecem provir de dois pontos, S1  e  S2 . Estas dois pontos assumem o papel das fendas S1  e  S2 na representação 
da experiência de Young da Fig. 3.2. O padrão de interferência pode ser observado num plano situado na região 
de sobreposição dos dois feixes reflectidos.
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Figura 3.3 - Representação do espelho duplo de Fresnel.

Os pontos S, S1  e  S2 situam-se sobre a circunferência de centro O e raio SOR = SO , tendo-se

RhSS θ221 ≈= 							                 	 (3.26)

A distância entre o plano das fontes virtuais S1  e  S2  e  o plano de observação é D = R+d, sendo d a 
distância de O ao plano de observação. O espaçamento entre as franjas é dado por:

R
dR

h
Dy

θ
ll

2
)( +

==∆ 						                	 (3.27)

3.3.3. O biprisma de Fresnel

Figura 3.4 - Representação do biprisma de Fresnel.

O biprisma de Fresnel  consiste em dois prismas colados nas suas bases, como se representa na Fig. 3.4. 
Quando uma onda cilíndrica incide nos dois prismas, a parte superior da frente de onda é refractada para baixo, 
parecendo que a onda assim refractada provém de uma fonte situada em S1 . Quanto à parte inferior da frente de 
onda original, ela é refractada para cima, parecendo que a onda refractada provém de uma fonte situada em S2 . 
O padrão de interferência forma-se na região de sobreposição dos dois feixes refractados. O espaçamento entre as 
franjas é dado igualmente pela Eq. (3.27), tendo-se, neste caso,

αθ )1( -= n 							                 	 (3.28)

onde n é o índice de refracção e α  é o ângulo do prisma.
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3.3.4. O espelho de Lloyd

O espelho de Lloyd  é constituído por um único espelho, no qual é reflectida parte da frente de onda 
emitida por uma fonte S (Fig. 3.5). Esta fonte encontra-se bastante próxima do plano do espelho. O padrão 
de interferência é obtido por sobreposição da onda reflectida no espelho e da parte da frente de onda vinda 
directamente da fonte S. O espaçamento entre as franjas no plano de observação é dado, igualmente, pela Eq. 
(3.27), onde h é a separação entre a fonte S e a sua imagem S’ produzida pelo espelho. 

Figura 3.5 - Representação do espelho de Lloyd.

O espelho de Lloyd apresenta um aspecto que o distingue dos outros interferómetros referidos antes. De 
facto, dado que o ângulo de incidência da luz no espelho é próximo de 90º, verifica-se que a luz reflectida apresenta 
uma diferença de fase de p  rad relativamente  à luz incidente. Como consequência deste desfasamento adicional, 
a Eq. (3.23) para a distribuição da intensidade é alterada e assume a forma :







=

D
hyII

l
p2

0 sen4  πhy
							                 	 (3.29)

Neste caso, tem-se uma franja escura para y = 0, em vez da franja brilhante observada em posição análoga 
na experiência de Young.

3.3.5. O interferómetro de Rayleigh

O interferómetro de Rayleigh baseia-se, igualmente, no esquema da experiência de Young e encontra-se 
representado na Fig. 3.6.  A luz proveniente da fonte pontual S é colimada antes de passar pelas duas fendas S1  
e  S2 . Os feixes emergentes dessas fendas passam pelos tubos T1 e  T2 , que se encontram cheios de gás. As franjas 
de interferência são formadas no plano focal da lente L e movem-se quando a pressão do gás num dos tubos é 
alterada. A contagem do número de franjas deslocadas, N, permite medir a variação do caminho óptico através do 
tubo e, portanto, a variação do índice de refracção do gás, n∆ . Se o comprimento do tubo for d, tem-se

l
ndN ∆

= 								                  	 (3.30)
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Figura 3.6 - Esquema do interferómetro de Rayleigh.

Para um gás diluído, o índice de refracção difere da unidade num valor proporcional à densidade, de modo 
que n-1 é proporcional à pressão. O índice de refracção obtido numa dada medição pode, depois, ser usado para 
calcular o seu valor para uma pressão diferente. Este interferómetro mostra-se particularmente útil no diagnóstico 
de plasmas e tem sido usado para medir variações do índice de refracção da ordem de 10₋8.

3.4. Interferência por divisão de  amplitude

É possível observar igualmente o fenómeno da interferência entre duas ondas provenientes de uma 
mesma região da frente de onda inicial. Neste caso, é a amplitude dessa onda que é dividida, falando-se então em 
interferência por divisão da amplitude.

Figura 3.7 - Geometria para o estudo da interferência por divisão de amplitude  

num filme dieléctrico.

Uma situação em que se verifica este tipo de interferência ocorre na reflexão de uma onda que incide 
nas faces de um filme dieléctrico. Esta situação encontra-se representada esquematicamente na Fig. 3.7. A onda 
incide no ponto P do filme, verificando-se a reflexão de uma parte da amplitude em direcção ao ponto S, enquanto 
que a outra parte é transmitida para o interior do filme, sendo posteriormente reflectida no ponto Q e seguindo 
depois até ao ponto R.  As características do fenómeno de interferência entre essas duas ondas dependem da 
diferença entre os respectivos percursos ópticos, os quais são dados pelos produtos das distâncias espaciais e dos 
índices de refracção dos meios percorridos.
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O percurso óptico (PO) correspondente ao trajecto desde o ponto P até ao ponto Q, e depois até ao ponto 
R, no interior do filme dieléctrico, com uma espessura d e um índice de refracção 2n , é dado por:

t
PQR

dnPO
θcos

2 2=PQ 							               	 (3.31)

Por outro lado, o percurso óptico entre os pontos P e S no meio com índice de refracção 1n  é dado por:

tiPS PRnPRnPO θθ sensen 21 ==PQ
PS 					             	 (3.32)

onde se usou a lei de Snell para a refracção. Por outro lado, tem-se

tdPR θtan2=PR 							               	 (3.33)

A diferença de percursos ópticos, L , dos dois raios é dada então por:

tt
t

PSPQR dndnPOPO θθ
θ

cos2)sen1(
cos
2

2
22 =-=-=L PO PO PS

			          	 (3.34)

A diferença de fase correspondente à diferença de percursos ópticos é igual ao produto entre o número de 
ondas para o vazio e L, isto é, 

0

2
0

cos4
l

θpδ tdnk =L= πdn 						       	 (3.35)

Contudo, assumindo que 123 nnn ><  na Figura 3.7, existe uma variação de fase adicional de p, ocorrida 
na reflexão no ponto P. Em consequência, a diferença de fase total entre as duas primeiras ondas reflectidas pelo 
filme dieléctrico é dada por:

pθ
l
ppδ ±=±L= tdnk cos4'

0

2
0

					             	 (3.36)

3.4.1. Franjas de Haidinger

Se o filme dieléctrico for iluminado por luz não colimada, e se a espessura desse filme for constante, podem 
observar-se franjas de igual inclinação, também conhecidas por franjas de Haidinger.  As franjas brilhantes 
ocorrem quando pδ 2' p= , ou seja, para ângulos dados por:

dn
p

t
2

0

4
)12(cos lθ +

= 							               	 (3.37)

onde se considerou o sinal menos na Eq. (3.36). Este resultado pode ser escrito em termos do ângulo de incidência 
usando a lei de Snell:
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					             	 (3.38)
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3.4.2. Franjas de Fizeau

Se um filme dieléctrico for iluminado com uma onda plana, então tθcos  é constante para todo o filme e 
cada franja de interferência, brilhante ou escura, corresponde a uma dada região do filme com espessura óptica 
bem definida. Por exemplo, a espessura correspondente a uma dada franja brilhante obtém-se a partir da Eq. 
(3.36) fazendo pδ 2' p= :

tn
pd

θ
l

cos4
)12(

2

0+
= 						                       	 (3.39)

Estas franjas são chamadas franjas de Fizeau ou franjas de igual espessura.

3.4.3. Anéis de Newton

Colocando uma lente convexa em contacto com uma placa de faces planas, obtém-se um filme dieléctrico 
entre as superfícies vizinhas dos dois elementos. As franjas de igual espessura observadas neste caso têm a forma 
circular, com centro no ponto de contacto (ponto O da Fig. 8.4), sendo designadas por anéis de Newton. 

Figura 3.8 - Geometria para a descrição dos anéis de Newton.

Na Fig. 3.8, designa-se por R o raio de curvatura da lente, enquanto que o raio de um dos anéis de Newton é 
indicado por  x  e a espessura do filme correspondente a esse anel por d. Estes três parâmetros podem relacionar-
-se através do teorema de Pitágoras:

222 )( dRRx --= 							               	 (3.40)

ou seja,

x2 = 2Rd – d 
2 ≈ 2Rd						                 	      	 (3.41)

tendo-se considerado na aproximação anterior que dR» . Assumimos que a incidência é praticamente normal, pelo 
que se tem 1cos ≈tθ . O raio da franja brilhante de ordem p obtém-se combinando a Eq. (3.39) com a Eq. (3.41), 
tendo-se:

	
2

0

2
)12(

n
Rpxp

l+
= 						              	 (3.42)
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Do mesmo modo, o raio da franja escura de ordem p é:

	
2

0

n
Rpxp

l
= 								                	 (3.43)

Geralmente, o filme entre a lente e a placa de faces planas é de ar, pelo que se tem 12 =n . Verifica-se dos 
resultados anteriores que, se o contacto entre os dois elementos for perfeito, a intensidade da franja central (no 
ponto 00 =x ) é mínima. A regularidade dos anéis de Newton pode servir para caracterizar o grau de perfeição 
das superfícies de uma lente.

3.5. O interferómetro de Michelson

De entre os vários interferómetros por divisão de amplitude, o mais conhecido e, historicamente, o mais 
importante é o interferómetro de Michelson, que foi desenvolvido pelo físico norte-americano Albert Michelson 
(1852-1931). Este interferómetro pode funcionar com uma fonte mais extensa que a usada na experiência de 
Young, aumentando assim a intensidade no padrão de interferência.

Figura 3.9 - Geometria para a descrição do interferómetro de Michelson.

Na Fig. 3.9 apresenta-se uma representação esquemática do interferómetro de Michelson. O feixe de luz 
proveniente da fonte S é dividido em dois feixes usando um espelho semi-transparente, que funciona como divisor- 
-de-feixe, DF. Os dois feixes seguem então trajectos independentes e ortogonais, são reflectidos nos espelhos E1 e  E2 , 
e voltam a encontrar-se no mesmo divisor-de-feixe, a partir de onde se verifica a sua interferência. 

É de notar que um dos feixes atravessa três vezes o divisor-de-feixe, enquanto que o outro o atravessa 
apenas uma vez. Por esse motivo, introduz-se uma placa de compensação, PC, no braço DF 2E , paralela e com 
a mesma espessura de DF, embora sem qualquer camada reflectora nas suas superfícies. A inclusão desta placa 
permite compensar os efeitos de dispersão do feixe em DF e garante que qualquer variação de percursos ópticos 
nos dois braços do interferómetro depende apenas de alterações da sua geometria.

Olhando para o divisor-de-feixe a partir do detector, observa-se uma imagem do espelho 2E , indicada por 
*
2E , junto do espelho 1E . A imagem *

2E  e o espelho 1E  formam um filme dieléctrico com uma espessura d e um 
índice de refracção 12 =n . 
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A diferença de percursos ópticos entre os raios reflectidos em 1E  e 2E   é θcos2d , pelo que a correspondente 

diferença de fase é θ
l
p cos22

0
d . 

Contudo, existe um desfasamento adicional de π rad entre os dois raios, dado que um deles se reflecte 
internamente e o outro externamente no divisor de feixe. Por isso, a diferença de fase correspondente a uma franja 
escura no plano de observação é:

θ
l
ppδ cos222
0

dp == 						               	 (3.44)

onde p é um inteiro. Se a distância d for constante, observam-se franjas de igual inclinação com forma circular. O 
valor máximo de p ocorre no centro desse conjunto de franjas, correspondente a 0=θ :

0
max

2
l
dp = 								                       (3.45)

Quando d aumenta, as franjas afastam-se do centro, aparecendo aí sucessivas franjas de ordem superior. A 
intensidade nessa posição varia de acordo com a expressão:















-=

c
dII ω2cos10

						                      (3.46)

onde se fez a substituição

0

2
l
pω

=
c

								                        (3.47)

e se assumiu um divisor-de-feixe 50:50. A intensidade é dada assim pela soma de um termo constante com um 
outro oscilatório.

O interferómetro de Michelson pode ser utilizado para realizar medições de distâncias de um modo bastante 
preciso. De facto, do exposto anteriormente, tem-se que, quando um dos espelhos sofre uma translação de 2/0l , 
cada franja se desloca de modo a ocupar o lugar da franja adjacente. Contando o número de franjas, N, que passam 
por uma dada posição de referência, é possível determinar a distância d∆  percorrida pelo espelho, dada por:

2
0lNd =∆ 								                       (3.48)

Inversamente, a Eq. (3.48) permite calcular o comprimento de onda 0l , uma vez conhecido o deslocamento 
do espelho e o número de franjas N correspondente.

3.6. O interferómetro de Mach-Zehnder

O interferómetro de Mach-Zehnder é um outro dispositivo baseado  na divisão da frente de onda. Em 
comparação com o interferómetro de Michelson, este interferómetro mostra-se mais flexível, dado que os 
trajectos dos raios, incidente e reflectido, em cada um dos espelhos são distintos, tornando-se então necessário 
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usar um segundo divisor-de-feixe (Fig. 3.10). Dado que os trajectos da luz nos dois braços do interferómetro 
são distintos, o alinhamento deste dispositivo revela-se relativamente difícil. Contudo, pela mesma razão, ele 
tem encontrado variadíssimas aplicações. Quando um objecto é colocado num dos braços do interferómetro, a 
diferença de percursos ópticos entre os dois braços é alterada e o padrão de interferência é afectado. 

O interferómetro de Mach-Zehnder é habitualmente utilizado para estudar o fluxo de gás em túneis de vento 
na presença de obstáculos. Um dos feixes passa através do túnel de vento, enquanto que o outro passa através de 
placas de compensação adequadas. Este estudo baseia-se no facto de o índice de refracção ser, em muitas situações, 
proporcional à densidade do gás. O feixe dentro do túnel passa através de regiões com diferentes densidades 
e, portanto, diferentes índices de refracção, o que se reflecte na formação de franjas de contorno no padrão de 
interferência.

Figura 3.10 - Representação esquemática do interferómetro de Mach-Zehnder.

3.7. O interferómetro de Sagnac

O interferómetro de Sagnac foi implementado pela primeira vez em 1911 e caracteriza-se por os dois feixes  
seguirem o mesmo trajecto, mas com sentidos opostos. O dispositivo pode apresentar três ou quatro espelhos e 
é relativamente estável e fácil de alinhar. Uma pequena variação na orientação de um dos espelhos determina o 
aparecimento de um padrão de franjas paralelas no plano de observação. 

A utilização de um interferómetro exige tipicamente a possibilidade de impor variações apenas num dos seus 
feixes. Contudo, no caso do interferómetro de Sagnac, dado que os seus dois feixes se encontram sobrepostos, ele 
não pode ser usado no modo convencional. Aliás, este interferómetro mostra-se insensível a qualquer efeito, para 
além da rotação em torno de um eixo perpendicular ao plano do dispositivo. A rotação provoca um encurtamento 
do caminho óptico para um dos feixes e um alongamento desse caminho para o outro feixe. 

Supondo que o anel constituído pelo interferómetro de Sagnac apresenta um raio médio R, então o tempo 
gasto pela luz para dar uma volta ao dispositivo na ausência de rotação é cR /2p . Contudo, se esse anel estiver a 
rodar com uma velocidade angular ω, o caminho óptico de um dos feixes é aumentado de 

R
c
Rds ωp2

=ds 							                       (3.49)

enquanto que o caminho óptico para o outro feixe é encurtado do mesmo valor. Ou seja, considerando um dado 
ponto de referência no anel, tem-se que o primeiro feixe chega a esse ponto com um atraso no tempo de ds/c, 
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enquanto que o segundo feixe chega ao mesmo ponto com um avanço de ds/c. A diferença no tempo de percurso é 
dada então por

	
22

2
442

c
A

c
R

c
dst ωωp

===∆
ds 					                     (3.50)

onde A é a área do anel. 

Figura 3.11 - Representação esquemática do interferómetro de Sagnac.

	 Supondo que o comprimento de onda  da luz usada no interferómetro é λ, o correspondente período é 
cT /l= , pelo que o deslocamento das franjas de interferência provocado pela rotação será dado por

l
ω

c
A

T
tN 4=

∆
=∆ 							                        (3.51)

resultado que foi confirmado experimentalmente. Este método foi usado por Michelson e Gale, em 1925, para 
determinar a velocidade angular da Terra.

3.8. Interferómetros com fibras ópticas

Como se verá no capítulo 5, a luz pode propagar-se ao longo de enormes distâncias em fibras de vidro que 
apresentam uma atenuação bastante reduzida. Deste modo, surgiu com naturalidade a ideia de usar essas fibras 
ópticas para guiar os feixes de luz correspondentes aos dois braços de alguns dos interferómetros anteriormente 
descritos. Os interferómetros assim realizados caracterizam-se pela sua configuração bastante simples, por 
apresentarem uma elevada sensibilidade e por serem bastante estáveis.

Por exemplo, o interferómetro de Mach-Zehnder, descrito na secção 3.6, pode ser realizado usando fibras 
ópticas nos seus dois braços, como se mostra na Fig. 3.12. Neste caso, a variação da fase da luz que se propaga na 
fibra óptica é causada por algum parâmetro externo (temperatura, pressão, tensão, campo magnético, etc.) e pode 
ser medida com bastante rigor através dos seus efeitos no padrão de interferência. Na realidade, o interferómetro 
de Mach-Zender em fibra óptica constitui um sensor com características bastante superiores às de muitos sensores 
convencionais. 
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Figura 3.12 - Representação esquemática do interferómetro de Mach-Zehnder utilizando fibras ópticas.

	

Os feixes emergentes das duas fibras podem ser considerados na prática ondas esféricas divergentes, que se 
fazem sobrepor usando um divisor e feixe. Contudo, em contraste com o que acontece com uma fonte pontual que 
emite uniformemente em todas as direcções, neste caso, os feixes interferentes apresentam uma distribuição de 
amplitudes Gaussiana. Em consequência, o padrão de franjas circulares, que é observado, apresenta uma distribuição 
global de intensidade também Gaussiana. Quando as duas extremidades das fibras se aproximam uma da outra, as 
franjas circulares expandem-se. Inversamente, as franjas contraem-se quando essas extremidades se afastam entre si.

O interferómetro de Sagnac, descrito na secção 3.7, pode também ser realizado com fibras ópticas e usado 
como giroscópio, como se mostra na Fig. 3.13. O sistema faz uso de uma bobina de fibra óptica, ao longo da qual se 
propagam os dois feixes de luz em sentidos opostos, sendo sensível à rotação em torno do eixo da bobina. A diferença 
entre os tempos de percurso dos dois feixes é dada pela Eq. (3.50), correspondendo-lhe uma diferença de fase dada por

c
NAtck

l
pωφ 8

0 =∆=∆
πωNA 						                      (3.52)

onde A é a área e N número de espiras da bobina. Por exemplo, se se pretender medir a rotação da Terra (15º/h), 
utilizando uma bobina de raio R = 0.4 m, com 500 voltas de fibra óptica e luz com comprimento de onda  λ = 0.6328 μm, 
deve poder medir-se uma variação da fase de 2.4 x 10 

₋3 rad.

Figura 3.13 - O interferómetro de Sagnac em fibra óptica. FMM: fibra monomodo.
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3.9. Interferência por reflexões múltiplas

Na discussão da Secção 3.4 desprezaram-se as múltiplas reflexões nas faces da lâmina dieléctrica. Contudo, 
essa aproximação deixa de ser válida quando a reflectividade das faces é significativa. Nesta Secção considera-se 
o efeito dessas múltiplas reflexões e mostra-se como, neste caso, a lâmina de faces paralelas pode constituir uma 
cavidade ressonante.

A Fig. 3.14 mostra a geometria para o estudo do efeito das múltiplas reflexões  numa lâmina de faces paralelas. 
Assume-se que uma onda de amplitude A incide na lâmina. Designa-se por r’ o coeficiente de reflexão na face 
anterior da lâmina (reflexão externa), por r o coeficiente de reflexão na face posterior da lâmina (reflexão interna), 
por t o coeficiente de transmissão para dentro da lâmina e por t’ o coeficiente de transmissão para fora da lâmina.

A primeira onda transmitida através da lâmina pode escrever-se na forma:

	 )(
0 ' rktieAttE





⋅-= ω 						                      (3.53)

Cada onda transmitida subsequentemente apresenta, em relação à anterior, um factor r 2 na amplitude e uma 
diferença de fase constante dada pela Eq. (3.35). Deste modo, a onda transmitida de ordem n pode escrever-se na forma:

δω inrktin
n eeAttrE )(2 '





⋅-= 					                                      (3.54)

onde n = 0, 1, 2, .... Pelo princípio da sobreposição, o campo resultante no ponto de observação é dado pela soma 
dos campos correspondentes a todas as ondas transmitidas. Ao efectuar-se essa soma, pode pôr-se em evidência 
o factor comum 0E , de modo que se tem:

( )...1 36242
0 ++++= δδδ iii

t erererEE 					                    (3.55)

Figura 3.14 - Geometria para a análise do efeito das múltiplas reflexões numa lâmina dieléctrica de faces paralelas.

 

A série geométrica no interior do parêntesis da Eq. (3.55) converge se 12 <δier . A onda resultante é dada então 
por:

δit er
EE 20 1

1
-

=

      
42

22

0 cos21
sencos1
rr

irrE
+-

+-
=

δ
δδ 				                                     (3.56)
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A intensidade transmitida através da lâmina é dada por 2/*ttt EEI = , ou seja:

42

2

cos21
)'(

rr
ttII i

t +-
=

δ
						                      (3.57)

onde 2/2AIi =  é a intensidade incidente. Não havendo absorção de energia, tem-se que tt ' = 1– r2 . Usando esta 
relação e a identidade trigonométrica )2/(sen21cos 2 δδ -= , a Eq. (3.57) pode-se apresentar na forma:

2
sen1

1
2 δF

II it
+

= 						                                       (3.58)

onde

( )22

2

1

4

r

rF
-

= 							                       (3.59)

é o denominado coeficiente de finesse. 

A função [ ] it IIF /)2/(sen1
12 =+

-
δ  na Eq. (3.58) é a chamada função de Airy, que se representa na Fig. 

3.15 para diversos valores da reflectividade r 

2. Pode-se verificar desta figura que o valor da função de Airy é 
máximo (igual a um) para ppδ 2= , qualquer que seja o valor de r. Quando r se aproxima de 1, a intensidade 
transmitida é reduzida, excepto na proximidade dos pontos onde ocorrem esses máximos.

No caso de não haver absorção de energia, a intensidade incidente deve ser igual à soma das intensidades 
dos feixes reflectido e transmitido:

tri III += 								                       (3.60)

A intensidade correspondente ao feixe reflectido pode ser obtida usando as Eq.s (3.58) e (3.60).
                      

Figura 3.15 - Função de Airy para vários valores da reflectância R = 2r .

3.10. O interferómetro de Fabry-Perot
O interferómetro de Fabry-Perot  é constituído por duas superfícies com elevada reflectância, geralmente 

separadas por ar. A reflectância dessas superfícies é normalmente aumentada por aplicação de revestimentos 
metálicos parcialmente reflectores. O interferómetro de Fabry-Perot é habitualmente utilizado na análise da 
estrutura fina das riscas espectrais e a sua descrição baseia-se na teoria apresentada na Secção 3.9.
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A definição das franjas no padrão de interferência formado pela luz transmitida através da cavidade de 
Fabry-Perot pode ser caracterizada pela largura a meia altura dessas franjas, correspondente a 2/)( maxtt II = . Pode 
verificar-se da Eq. (3.58) que este valor da intensidade ocorre quando *max δδδ ±= , sendo ppδ 2max =  e







= -

F
1sen2* 1δ 							                        (3.61)

Atendendo a que F é geralmente elevado, tem-se que FF /1)/1(sen 1 ≈- , pelo que a largura total a 

meia altura *2δγ =  é dada por:

F
4

=γ 								                        (3.62)

Das Eq.s (3.61), (3.62) e (3.59) pode verificar-se que, quanto maior for a reflectância 2rR = , mais estreitas 
se tornam as franjas brilhantes no padrão de transmissão. 

Outra grandeza usualmente definida é a finesse da cavidade, Φ , dada pela razão entre a distância entre 
máximos adjacentes e a largura a meia altura:

F
2

2 p
γ
p

==Φ 							                       (3.63)

O poder de resolução cromática, ℜ , do interferómetro é dado por 00 / ll ∆ , onde 0l  é o comprimento 
de onda médio da luz e 0l∆  é o valor mínimo da diferença entre dois comprimentos de onda resolúveis. Como 
critério de resolução, estabelece-se que dois comprimentos de onda, 1l  e 2l , são resolúveis desde que as funções 
de Airy associadas a esses comprimentos de onda se intersectem abaixo do ponto de meia altura do pico de 
intensidade. Na situação de separação mínima, a variação de fase quando se vai desde o máximo de intensidade 
de 1l  até ao máximo de intensidade de 2l  é γδ =∆ , dada pela Eq. (3.62). Por outro lado, diferenciando a Eq. 
(3.35) obtém-se:

t
tnd θ

l
θpδ ∆

-
=∆

0

sen44πnd 	  					                     (3.64)

Ocorre uma franja brilhante quando se verifica a condição:

0cos2 lθ pnd t =nd 							                       (3.65)

Diferenciando esta equação tem-se

02 lθθ ∆=∆- pndsen tt 						                      (3.66)

A partir das Eq.s (3.62), (3.64) e (3.66) tem-se que

F
p 42

0

0 =
∆

⇔=∆
l
lpγδ 						                      (3.67)

O poder de resolução cromática é dado então por:

Fp
20

0 p
l

l
=

∆
=ℜ 							                      (3.68)

Da Eq. (3.65) pode ver-se que o valor máximo de p ocorre quando 1cos =tθ , tendo-se:
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0
max

2
l
ndp =
nd 							                       (3.69)

Neste caso, tem-se da Eq. (3.68) que

Fnd

0l
p

=ℜ
nd 							                       (3.70)

Chama-se banda espectral livre de um interferómetro à diferença de comprimentos de onda bel)( l∆ , 
correspondente a uma variação da distância d de 2/0l , ou a uma variação em p de uma unidade, ou seja, a uma 
variação da diferença de fase pδ 2=∆ . A banda espectral livre é a diferença máxima de comprimentos de onda 
que pode ser medida sem ambiguidade pelo interferómetro. 

Tendo em consideração a Eq. (3.67), pode-se escrever:

pbel
0)(

l
l =∆ 						                                       (3.71)

Substituindo nesta equação o valor máximo de p dado pela Eq. (3.69) obtém-se a banda espectral livre mínima:

ndbel 2
)(

2
0ll =∆

nd
								        (3.72)

É de notar que a razão entre a banda espectral livre e o valor mínimo da diferença de comprimentos de 
onda resolúveis é igual à finesse Φ , definida na Eq. (3.63). De facto, usando as Eq.s (3.68), (3.69) e (3.72) tem-se:

Φ==
∆

∆ Fbel

2
)(

0

p
l

l 						                       (3.73)

No espectro visível, a finesse das cavidades de Fabry-Perot é geralmente da ordem de 30.

3.11. Coerência

Nas secções anteriores assumiu-se em geral que a luz era monocromática e produzida por uma fonte 
pontual. Contudo, nenhuma fonte é verdadeiramente pontual, nem a luz emitida é, em alguma circunstância, 
rigorosamente monocromática, de modo a poder ser descrita por uma onda sinusoidal estendendo-se infinitamente 
no espaço e no tempo. Ou seja, na prática, a luz nunca é verdadeiramente coerente. A coerência pode ser definida 
como a estabilidade da fase de uma onda, tanto no espaço como no tempo. 

3.11.1. Comprimento e tempo de coerência

Pode-se considerar que a luz quase-monocromática é constituída por um grande número de trens de ondas 
de extensão finita e com fases relativas arbitrárias. A luz proveniente de dois pontos separados entre si por uma 
distância menor que o comprimento de um trem de ondas elementar é coerente e poderá interferir, como sucede 
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com uma onda monocromática. Contudo, se a distância entre esses pontos for superior ao comprimento de um 
trem de ondas, então a luz deles proveniente é incoerente e não interferirá. O comprimento de um trem de ondas 
elementar é designado por comprimento de coerência. Por outro lado, chama-se tempo de coerência ao tempo que 
esse trem de ondas demora a passar por um dado ponto.

A largura de uma linha espectral, em termos de comprimento de onda, l∆ , e em termos de frequência, 
ν∆ , relaciona-se com o comprimento de coerência, cl , na forma

cl
c

≈
∆

=
∆ νl
l2

						                       	 (3.74)

onde c é a velocidade da luz. A Eq. (3.74) mostra que o comprimento de coerência é infinito apenas se a linha espectral 
tiver uma largura nula, o que nunca sucede na realidade. O comprimento de coerência relaciona-se com o tempo de 
coerência, cτ , do modo

cc cl τ= 	     						                         	 (3.75)

Usando as Eq.s (3.74) e (3.75) pode-se concluir que

1≈⋅∆ cτν 			       				                       	 (3.76)

Este resultado corresponde ao chamado princípio de incerteza.

Os valores típicos do comprimento de coerência da luz situam-se numa gama que pode ir desde 1 mm, como 
sucede com a luz branca, até algumas dezenas de km, como acontece com a luz emitida por alguns lasers. A luz 
emitida por uma lâmpada de sódio ou de mercúrio apresenta um comprimento de coerência na ordem de 1 cm.

3.11.2. Função de coerência mútua e grau de coerência

Considere-se uma fonte extensa, de largura de banda reduzida, que produz um campo luminoso ),( trE 

. Os 
efeitos da polarização não serão incluídos na discussão que se segue, pelo que uma representação escalar do campo 
é suficiente. Sejam )(),( 11 tEtrE ≡



 e )(),( 22 tEtrE ≡


 os campos em dois pontos P1 e  P2 . Um detector colocado 
à saída de um interferómetro, que combine a luz proveniente destes dois pontos, permite medir a intensidade 
correspondente, I, que é proporcional ao valor médio do quadrado do módulo do campo resultante. Ignorando o 
factor de proporcionalidade, tem-se

{ }{ }*)()()()()( 2121 tEtEtEtEI ++++= τττ 			                     	 (3.77)

onde o asterisco indica o complexo conjugado,  denota uma média no tempo e τ representa um atraso relativo que 
existirá normalmente entre os dois campos combinados. Desenvolvendo o produto na expressão anterior, tem-se

)()()()()()()()()( 2
*
1

*
21

*
22

*
11 tEtEtEtEtEtEtEtEI τττττ +++++++=             (3.78)

Os primeiros dois termos na Eq. (3.78) representam simplesmente as intensidades nos pontos  P1 e  P2 , 
enquanto que o terceiro e quarto termos traduzem a interferência entre os dois campos. Estes dois últimos termos 
são o complexo conjugado um do outro, pelo que ambos contêm a mesma informação. Convencionalmente usa-se 
o terceiro termo para definir a chamada função de coerência mútua, )(12 τΓ12 :
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)()()( *
2112 tEtE ττ +=Γ12 	    				                                     	(3.79)

É de notar que, quando os pontos  P1 e  P2  coincidem e 0=τ , a função de coerência mútua reduz-se às 
respectivas intensidades:

111 )0( I=Γ11 ,   	 222 )0( I=Γ22 			      	                                 (3.80)

Usando as Eq.s (3.79) e (3.80), pode-se escrever a intensidade à saída do interferómetro na forma

{ })(Re2)( 1221 ττ Γ++= III Re 12 					                        	 (3.81)

A função de coerência mútua pode ser normalizada na forma

)0()0(
)()(
2211

12
12 ΓΓ

Γ
=

ττγ12
11 22

12 					                                      (3.82)

sendo a nova grandeza chamada grau de coerência complexo. Usando esta definição e a Eq. (3.80), pode-se escrever 
a Eq. (3.81) do modo

{ })(Re2)( 122121 τγτ IIIII ++= Re 12 				                     	 (3.83)

Este resultado traduz o princípio geral de interferência para luz parcialmente coerente.
O módulo do grau de coerência complexo, 12γ12 , é conhecido como grau de coerência. A Eq. (3.82) e a 

desigualdade de Schwarz permitem mostrar que 1)(0 12 ≤≤ τγ12 . Quando 112 =γ12  tem-se a situação de coerência 

total, enquanto que o caso 012 =γ12  corresponde à situação de incoerência total. Finalmente, o caso 10 12 << γ12  
corresponde a uma situação de coerência parcial.	

A visibilidade, V, de um conjunto de franjas de interferência é definida à custa dos valores máximo e 
mínimo da intensidade no padrão de interferência, sendo dada por:

minmax

minmax

II
IIV

+
-

= 						                       	 (3.84)

Pode-se exprimir a visibilidade em função do grau de coerência )(12 τγ
12

 na forma

)(
2

12
21

21 τγ
II
II

V
+

= 12 						                       	 (3.85)

Quando a intensidade dos dois campos é igual, 21 II = , tem-se 

								                         	 (3.86))(12 τγ=V 12

ou seja, a visibilidade das franjas proporciona uma medida directa do grau de coerência das ondas interferentes.

3.11.3. Coerência temporal

Quando os dois pontos  1P  e 2P , referidos na secção anterior, são coincidentes, a função de coerência mútua, 
dada pela Eq. (3.79), reduz-se à função de autocoerência do campo, tendo-se )()()()( 221112 ττττ Γ=Γ=Γ=Γ12 11 22 . 

)(τΓ  é a chamada função de autocoerência nesse ponto, para dois instantes de tempo espaçados de τ. Esta situação 
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verifica-se, por exemplo, no interferómetro de Michelson, em que τ é igual à razão entre a diferença de percursos nos 
dois ramos do interferómetro e a velocidade da luz, c.

A função de autocoerência )(τΓ  é dada por:

∫
-

→∞
+=+=Γ

2/

2/

*
11

*
11 )()(1lim)()()(

T

T
T

dttEtE
T

tEtE τττ
→∞

td 		                   	 (3.87)

Esta função pode ser normalizada, resultando no chamado grau de coerência temporal complexo:

)0(
)()(

Γ
Γ

=
ττγ 								                       	(3.88)

Atendendo a que 1)0( I=Γ  é o valor máximo (real) do módulo de )(τΓ , tem-se que 1)( ≤τγ .
Usando as definições anteriores, pode-se escrever a intensidade no plano de observação na forma:

{ } { }[ ])(Re12)(Re22)( 11 τγττ +=Γ+= III Re Re 		                                  	                 (3.89)

Mostra-se no problema PR 3.14 que, no caso de uma onda harmónica, dada por tieEtE ω
01 )( = , a visibilidade 

das franjas de interferência é V=1. Este resultado corresponde a um caso limite, em que a luz é completamente 
coerente. Tal situação acontece, aproximadamente, com a luz emitida por um laser monomodo estabilizado. No 
limite oposto, tem-se o caso da luz completamente incoerente, caracterizada por 0)( =τγ  para 0≠τ .  A luz 
solar ou a luz proveniente de uma lâmpada de incandescência são exemplos em que esta situação se verifica 
aproximadamente. 

No caso de muitas fontes de luz, quer naturais, quer artificiais, a visibilidade das franjas de interferência 
decresce monotonamente com o atraso temporal τ . Quando esse decaimento é de 1/e, o atraso temporal 
correspondente dá o tempo de coerência, cτ , que se relaciona com o comprimento de coerência, cl , na forma dada 
pela Eq. (3.75). 

No caso do interferómetro de Michelson, o atraso temporal entre as duas ondas interferentes é devido 
à diferença dos seus percursos ópticos. Quando se usa luz branca, a diferença de percursos nos braços do 
interferómetro deve ser inferior a um comprimento de onda para que a visibilidade do padrão de franjas seja 
boa. Contudo, no caso de se usar luz emitida por um laser, atendendo ao valor elevado do seu comprimento 
de coerência, a visibilidade dessas franjas mantém-se elevada, mesmo quando os comprimentos dos braços do 
interferómetro são muito diferentes.

3.11.4. Coerência espacial

As características de interferência da luz, emitida por muitas fontes, são afectadas negativamente quando 
as dimensões dessas fontes aumentam. Nestes casos, importa considerar a interferência da luz proveniente 
de elementos espacialmente distintos da fonte. Este problema será analisado nesta secção tendo por base a 
experiência de Young.

Considere-se as fendas de Young iluminadas por luz proveniente de uma fonte extensa com diâmetro 2d, 
em vez da fonte pontual S, considerada na análise da Secção 3.3. A fonte extensa pode ser encarada como um 
conjunto de fontes pontuais independentes. As ondas emitidas a partir do ponto S da fonte, situado no eixo, 
chegam às fendas S1 e  S2 com a mesma fase, dando origem a um sistema de franjas no plano de observação com 
um máximo no eixo óptico. Contudo, um ponto S’ da fonte situado fora do eixo (Fig. 3.16) dará origem a um 
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sistema de franjas desviado lateralmente em relação ao anterior. De facto, as distâncias 11 'SSl =  e 22 'SSl =  não 
são iguais neste caso, pelo que existe uma diferença de fase entre as duas ondas originadas em S1 e  S2 :

)(2
2121 ll -=-

l
pεε 					                                   	                 (3.90)

Neste caso, o máximo de interferência de ordem zero no plano de observação, encontra-se desviado do eixo de

)( 21 llyym -
∆

=
l

						                       	 (3.91)

onde y∆  é o espaçamento entre as franjas, dado pela Eq. (3.25).

	 Figura 3.16 - Geometria da experiência de Young para o caso de uma fonte extensa.

Suponhamos agora que os dois pontos S  e  S’ emitem simultaneamente. Quando a fonte extensa é 
incoerente, a diferença de fase entre as ondas geradas em S e S’ varia aleatoriamente. Neste caso, obtém-se 
no plano de observação uma distribuição de intensidade dada simplesmente pela soma das intensidades dos 
sistemas de franjas correspondentes a cada um dos dois pontos emissores.  Deste modo, para que as franjas de 
interferência sejam visíveis, os sistemas de franjas gerados por S  e  S’ não devem estar muito desviados entre si. 
Concretamente, não deve acontecer que o máximo de um sistema coincida com o mínimo do outro sistema. Esta 
condição requer

2
yym

∆
< 							                        	 (3.92)

Ou seja, tendo em conta a Eq. (3.91), deve ser

221
l

<- ll 							                       	 (3.93)

Considerando a geometria da Fig. 3.16, tem-se

22
1 )2/( Lhdl +-=   

L
hdhdL

8
44 22 -+

+≈
hd 			                 	               (3.94a)

22
2 )2/( Lhdl ++=  

L
hdhdL

8
44 22 ++

+≈
hd 	                			                 (3.94b)

pelo que

L
hdll =- 21
 hd 							                       	(3.95)
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A Eq. (3.93) dá então

2
l

<
L

hd hd
							                        	 (3.96)

Este resultado constitui a condição de coerência espacial para o caso de uma fonte extensa e incoerente.
Quando se considera o padrão de interferência no plano de observação perto do eixo óptico, tem-se que as 

distâncias entre essa região e as duas fendas S1 e  S2 são praticamente iguais. Nestas circunstâncias, o padrão de 
interferência reflecte a relação entre os campos ),( 1 trE   e ),( 2 trE   nas duas fendas S1 e  S2 , respectivamente, a qual 
pode ser representada pela função de correlação:

			                    	    				                     (3.97)),(*),()0()0,,( 211221 trEtrErr 

=Γ=Γ 12

A função dada pela Eq. (3.97) é chamada função de coerência espacial.

3.12. Problemas resolvidos

PR 3.1. A visibilidade, V, de um conjunto de franjas de interferência é definida à custa dos valores máximo e 
mínimo da intensidade no padrão de interferência, tal como é dado pela Eq. (3.84). Obtenha uma expressão 
para a visibilidade do padrão de franjas resultante da interferência de duas ondas coerentes cujos campos são 
paralelos. Qual é a visibilidade desse padrão quando as amplitudes das duas ondas são iguais?

Resolução
Da Eq. (3.6) tem-se que 

2121 2 IIIIImáx ++= 							             (1)

e	

2121min 2 IIIII -+= 							            (2)

pelo que se tem

	
21

212
II
II

V
+

= 								             (3)

No caso de as amplitudes das duas ondas serem iguais, tem-se 021 III == , pelo que a visibilidade é dada 
a partir da Eq. (3) por

	 1
2

2

0

2
0 ==

I
I

V 								             (4)

Verifica-se, assim, que a visibilidade é máxima nesta situação.
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PR 3.2. Obtenha a intensidade resultante da sobreposição de N ondas com amplitudes iguais nos casos em que 
(a) as ondas são coerentes e se encontram em fase no ponto de observação e 
(b) as ondas são incoerentes.

Resolução
(a) A intensidade é proporcional ao valor médio no tempo do quadrado da amplitude do campo eléctrico, 

2
0E . No caso de as ondas serem coerentes, se encontrarem em fase no ponto de observação e apresentarem a 

mesma amplitude, tem-se da Eq. (3.17) que

∑∑∑
> ==

+=∝
N

ji

N

j
ij

N

j
j EEEEI

1
00

1

2
0

2
0 2 						           (1)

              
2

1
0 










= ∑

=

N

j
jE

									      
 

Verifica-se deste resultado que, quando se tem a sobreposição de ondas coerentes e em fase, a intensidade 

resultante é proporcional ao quadrado da soma das amplitudes dessas ondas. No caso em que as ondas têm a 
mesma amplitude, tem-se

             
2
01

2ENI ∝ 01 							             		       (2)

(b) Se as ondas sobrepostas forem incoerentes, em virtude da variação rápida e aleatória da diferença de 
fase entre essas ondas, os valores médios dos co-senos na Eq. (3.17) são nulos, tendo-se

	 ∑
=

=∝
N

j
jEEI

1

2
0

2
0

								             (3)

Ou seja, quando se tem a sobreposição de ondas incoerentes, a intensidade resultante é simplesmente igual 

à soma das intensidades individuais. No caso de as amplitudes das ondas serem iguais, tem-se o resultado:

2
01NEI ∝ NE 01 							               		       (4)

PR 3.3. Um feixe de luz com comprimento de onda l  ilumina as duas fendas na experiência de Young, que se 
encontram espaçadas de 1.5 mm. A distância entre o plano das fendas e o plano de observação é de 15 m e o 
espaçamento entre duas franjas brilhantes consecutivas nesse plano de observação é 6.3 mm. Qual é o comprimento 
de onda da luz ? Assumindo que as duas fendas são iguais, como se distribui a intensidade no plano de observação? 

Resolução
Usando a Eq. (3.24), tem-se

7
33

103.6
15

)103.6)(105.1( -
--

×=
××

=∆= y
D
hl

15
  (1.5x10–3)(6.3x10–3)

6.3x10–7 m 				          (1)

Por outro lado, de acordo com a Eq. (3.23), a distribuição da intensidade no plano de observação é dada por:

22
07

3
2

0
2

0 W/m)500(cos4
)15)(103.6(

)105.1(cos4cos4 yIyI
D
hyII =









×
×

=





= -

-p
l
pπhy 10–3

10–7)(15)
		       (2)
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A intensidade tem um valor máximo 04II =  (franja brilhante) quando pny =500 , n = 0, 1± , 2± … e um 
valor mínimo 0=I  (franja escura) quando 2/)12(500 p+= ny , n = 0, 1± , 2± ….

PR 3.4. Monta-se uma experiência de Young, utilizando luz com comprimento de onda l = 600 nm. Quando se coloca 
um filme de material transparente em frente de uma das fendas, a franja de ordem zero move-se para a posição 
ocupada anteriormente pela franja brilhante de ordem 5. Sabendo que o índice de refracção do filme é n = 1.5, 
determine a sua espessura.

Resolução
Observa-se uma franja brilhante quando a diferença de percursos ópticos da luz proveniente das duas fendas 

é um múltiplo do comprimento de onda: lp=L , sendo p um inteiro. Diferenciando a relação anterior, tem-se que  
δΛ = λδp. Colocando-se um filme de espessura d em frente de uma das fendas, a diferença de percursos óticos varia de 

)1( -=L ndδ . 								              (1)

Atendendo a que a introdução desse filme produz um desvio de cinco franjas no padrão de interferência, 
tem-se 5=pδ , pelo que lδ 5)1( =-=L nd . Desta relação tira-se o resultado para a espessura do filme:

6
1

5
=

-
=

n
d l

μm								             (2)
	

PR 3.5. Encontre o ângulo θ  entre os dois espelhos de Fresnel, supondo que a sua intersecção se encontra à 
distância R = 2 m da fonte e à distância d = 4 m do plano de observação, enquanto o comprimento de onda da luz 
é 600=l nm e o espaçamento entre as franjas brilhantes consecutivas é de 2 mm.

Resolução
Como foi visto na secção 3.3.2, a análise do espelho duplo de Fresnel pode ser feita de modo análogo à 

experiência de Young. Em particular, o espaçamento entre as franjas é dado pela Eq. (3.25):

l
h
Dy =∆ 						                			         (1)

sendo h o espaçamento entre as duas fontes virtuais, S1 e  S2 , obtidas pela intercessão dos raios provenientes da 
fonte real S e reflectidos nos dois espelhos, enquanto D é a distância entre o plano das fontes virtuais e o plano de 
observação. A geometria da Fig. 3.3 permite escrever as relações:

Rh θ2≈ 									              (2)
e

D = R + d									              (3)

Usando as Eq.s (1)-(3), tem-se

yR
dR
∆

+
=

2
)( lθ  								             (4)

Substituindo os valores indicados, obtém-se o resultado:

4
3

9
105.4

)102)(2(2
)10600)(42( -

-

-

×=
×

×+
=θ

  (2+4)(600x10–9)
  2(2)(2x10–3)

4.5x10–4 rad 					          (5)
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PR 3.6. Considere o padrão de interferência correspondente às três fendas, de igual largura, representadas na 
figura 3.17.

a)  Obtenha uma expressão para a distribuição da intensidade em função do ângulo θ   e obtenha a intensidade 
para 0=θ rad.

b) Determine o ângulo 01 ≠= θθ  correspondente primeiro máximo adjacente ao máximo central.
c) Relacione a intensidade para 2/1θθ =  com a intensidade para 0=θ .

Figura 3.17 – Interferência usando plano com três fendas.

Resolução
a) Pelo princípio da sobreposição, o campo resultante num ponto do plano de observação é dado pela soma 

dos campos devidos a cada uma das fendas:

321 EEEE ++= .								              (1)

Os campos 1E , 2E  e 3E  diferem entre si apenas devido à diferença de percursos ópticos desde cada uma 
das fendas até ao ponto de observação. Sendo 1E  o campo devido à fenda superior, pode-se escrever:

( ) ( )2/5expexp 111 δδ iEiEEE ++= 						           (2)

onde

δ = kd sen θ.								             (3)
 
A intensidade no ponto de observação é dada, a menos de um factor constante, por

( ) ( ) ( ){ }[ ]2/5cos2/3coscos23*)( 2
1 δδδθ +++== EEEI EE 			        (4)

Para 0=θ , tem-se 0=δ , pelo que 

2
19)0( EI = 									             (5)

b) Verifica-se da Eq. (4) que o primeiro máximo lateral acontece para pδ 4= . O ângulo correspondente 
obtém-se da Eq. (3):

d
lθθθ 2sen 11 =≈= 								            (6)

c) O ângulo 2/1θθ =  corresponde a pδ 2= , sendo a intensidade dada por:

9/)0()2/( 2
11 IEI ==θ 							            (7)

PR 3.7. Duas lâminas rectangulares e finas de vidro estão em contacto ao longo de uma das suas arestas, enquanto 
que no lado oposto se interpôs um separador de 5 mm de espessura. Os índices de refracção das lâminas superior 
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e inferior são, respectivamente, 1.5 e 2.0. Observa-se franjas de interferência quando se faz incidir luz com 
comprimento de onda λ = 500 nm normalmente às placas.

a) Quantas franjas são observadas existindo ar entre as placas?
b) E se existir óleo com um índice de refracção n = 1.8 entre essas placas?

Resolução
a) Havendo ar entre as placas e atendendo à relação entre os índices de refracção que definem o filme em 

causa (1.5 > 1.0 < 2.0), a condição para haver uma franja escura no ponto de observação é:

pθ
l
pδ 2cos4

0

2 pdn
t == 							             (1)

onde 0.12 =n  e 0=tθ rad para uma incidência normal. Considerando a espessura do filme na posição do 
separador (d = 5 mm), tem-se:

202
0

==
l
dp 20 								             (2)

Considerando que para d = 0 μm se tem igualmente uma franja escura, conclui-se que existem 21 franjas 
escuras e 20 franjas brilhantes.

b) Havendo óleo entre as placas e atendendo à relação entre os índices de refracção que definem o filme em 
causa (1.5 < 1.8 < 2.0), a condição para haver uma franja brilhante no ponto de observação é:

pθ
l
pδ 2cos4

0

2 pdn
t == 							            (3)

onde 8.12 =n . Usando 0=tθ  rad e a espessura do filme na posição do separador (d = 5mm), tem-se:

362
0

2 ==
l

dnp 36 								             (4)

Considerando que para d = 0 μm se tem igualmente uma franja brilhante, conclui-se que existem 37 franjas 
brilhantes e 36 franjas escuras.

PR 3.8. Um filme dieléctrico de faces paralelas e com índice de refracção 5.12 =n , situado no ar, é iluminado por 
luz com um comprimento de onda 7.565=l nm, que incide nele segundo um ângulo de 30º. Qual a espessura 
mínima do filme que permite obter uma franja brilhante no padrão de  interferência formado pela luz reflectida?

Resolução
Dada a relação entre os índices de refracção que definem o filme (1.0 < 1.5 > 1.0), a condição para haver uma 

franja brilhante no ponto de observação é pδ 2' p= , sendo 'δ , dado pela Eq. (3.36). Para se ter uma espessura 
mínima do filme, deve ser p = 0, pelo que se tem a condição 

pθ
l
pδ -== tdn cos40' 2 							             (1)

Ou seja:

tn
d

θ
l
cos4 2

=  								             (2)
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Usando a relação

tt θθ 2sen1cos -= 							            (3)

e a lei de Snell para a refracção, ti n θθ sensen 2= , tem-se

in
d

θ
l

22
2 sen4 -

= 								            (4)

Substituindo os valores dados, obtém-se o resultado:

1.0
º30sen5.14

107.565
22

9
=

-

×
=

-

d 10–9

30
μm 						           (5)

PR 3.9. Uma lente biconvexa com um raio de curvatura R encontra-se pousada sobre uma superfície plana, 
sendo iluminada na normal com luz de comprimento de onda l . O espaço entre a lente e a superfície plana é 
preenchido com um líquido com índice de refracção ln = 1.4. Qual é a razão entre os raios do 20º anel escuro antes 
e depois da introdução desse líquido?

Resolução
O raio do anel escuro da ordem p é dado pela Eq. (3.43). No caso de o espaço entre a lente e a superfície 

plana ser preenchido por ar ( 12 =n ), tem-se

Rpx ap 0, l= 								              (1)

Depois da introdução do líquido, com um índice de refracção ln , o raio do mesmo anel passa a ser

l
lp n

Rpx 0
,

l
= 								             (2)

Dividindo membro a membro as Eq.s (1) e (2), tem-se

18.1
/,

, === l
llp

ap n
nRp

Rp
x
x

l
l

1.18						           (3)

Ou seja, a razão entre os dois raios é dada por ln , independentemente da ordem do anel, do raio 
de curvatura da lente e do comprimento de onda da luz utilizada. Com a introdução do líquido, um anel de 
interferência com determinada ordem diminui o seu raio.

PR 3.10. Tendo em consideração as Eq.s (3.58) e (3.60), obtenha os valores máximo e mínimo das intensidades 
correspondentes aos feixes transmitido e reflectido.

Resolução
Da Eq. (3.58) vê-se que a intensidade do feixe transmitido, tI , é máxima quando ppδ 2= , tendo-se:

( ) it II =max
						        	      		        (1)
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Nestas condições,  Ir  assume um valor mínimo:

( ) 0min =rI 							               		       (2)

Por outro lado, tI  é mínimo e rI  é máximo para pδ )12( += p , tendo-se então:

( ) ( )
( )22

22

min
1

1

r

rII it
+

-
= 					            			        (3)

e	

( )
( )22

2

max
1

4

r

rII ir
+

= 					            			        (4)

PR 3.11. Introduz-se uma lâmina transparente com um índice de refracção n e espessura L num dos braços 
do interferómetro de Michelson, perpendicularmente ao feixe. Determine o deslocamento que deve ser dado 
ao espelho de modo a que o sistema de franjas no plano de observação permaneça igual ao existente antes da 
introdução da lâmina.

Resolução
Ao introduzir-se a lâmina, o percurso óptico correspondente à sua espessura passa de 1L para nL. Atendendo 

a que esse elemento do percurso é percorrido duas vezes, tem-se que a alteração do percurso óptico resultante 
da introdução da lâmina é Ln )1(2 - . Em ordem a compensar esta variação do percurso óptico, o espelho deve 
deslocar-se de d∆ , tal que,

Lnd )1(22 -=∆ ,   								             (1)

ou seja,
 

Lnd )1( -=∆ 								             (2)

PR 3.12. Ajusta-se um interferómetro de Michelson de modo a obter-se um padrão de franjas circulares 
concêntricas quando ele é iluminado com uma fonte extensa de luz com um comprimento de onda λ = 400 nm. 

a) Determine o deslocamento a dar ao espelho móvel para que se verifique o aparecimento de 500 franjas 
no centro do padrão de interferência.

b) Se a franja central for brilhante, obtenha uma expressão para o ângulo correspondente ao primeiro anel 
escuro.

Resolução
As franjas circulares concêntricas correspondem a franjas de igual inclinação e são observadas quando os 

dois espelhos do interferómetro são mutuamente perpendiculares. A diferença de percurso ótico entre os dois 
braços é dada por

Λ = 2nd cos θ								              (1)

sendo d a diferença de comprimento entre os dois braços do interferómetro, n o índice de refracção do meio       
(n = 1 para o ar) e θ  o ângulo de incidência da luz nos espelhos.
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a) Para que se verifique o aparecimento de 500 franjas no centro do padrão de interferência (θ =0), deve 
ter-se l5002 ==L d . Ou seja, o espelho móvel deve deslocar-se de 1.0250 == ld mm.

b) Se a franja central for brilhante, tem-se

l





 +=

2
12 pd ,	 p inteiro							           (2)

Para o primeiro anel escuro, tem-se 

lθ pd =cos2 								             (3)

Subtraindo membro a membro as Eq.s (2) e (3), tem-se

2
)cos1(2 lθ =-d 							           	      (4)

Dado que o valor de θ  é muito pequeno, pode-se usar a aproximação 
2

1cos
2θθ -≈ , obtendo-se o resultado:

d2/lθ ≈ rad								             (5)

PR 3.13. Pretende-se reduzir a reflectividade de uma superfície de vidro (índice de refracção vn ) aplicando-lhe um 
filme apropriado. Determine o índice de refracção fn  ( fn  < vn ) e a espessura d que esse filme deverá ter. Consi-
dere, para efeito de cálculos, o comprimento de onda λ = 550 nm, para o qual a sensibilidade da vista é máxima.

Resolução
No sentido de reduzir a reflectividade da superfície do vidro, a luz reflectida nas interfaces ar/filme e filme/

vidro deve estar em oposição de fase para que a sua interferência seja destrutiva. Dado que se tem  an < fn  < vn ,  
sendo an  o índice de refracção do ar, a espessura d do filme deve satisfazer a condição:

l

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

 +=

2
12 pdn f

, 								              (1)

onde p um número inteiro. Por outro lado, para assegurar que as amplitudes das ondas reflectidas nas duas 
interfaces sejam semelhantes, as reflectividades dessas interfaces devem ser iguais: Rar / filme = Rfilme / vidro . Ou seja, 
deve-se ter
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onde se assumiu uma incidência normal da luz. A condição anterior dá o resultado:

	 vaf nnn = 								             (3)

Assim, substituindo o resultado anterior na Eq. (1), obtém-se que a espessura do filme é dada por

vann
pd

22
1 l







 += 							            (4)

Fazendo p = 0 e substituindo os valores 0.1=an ,  5.1=vn  e λ = 550 nm, obtém-se o resultado d = 112 nm.
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PR 3.14. Obtenha a função de autocoerência, o grau de coerência temporal e a visibilidade das franjas de 
interferência, para o caso de uma onda harmónica, dada por

tieEtE ω
01 )( = 				            	                  		        (1)

Caracterize a coerência desta onda harmónica.

Resolução
A função de autocoerência correspondente à onda harmónica é dada por
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Com base na Eq. (3.88), tem-se que o grau de coerência temporal é dado por

ωτττγ ie=
Γ
Γ

=
)0(
)()( eiωτ 						                      		      (3)

Neste caso, a visibilidade é

1)( == τγV 					                      		       (4)

O resultado traduzido pela Eq. (4) corresponde a um caso limite, em que a luz é completamente coerente.

PR 3.15. Obtenha a função de autocoerência, o grau de coerência temporal e a visibilidade das franjas de 
interferência, para o caso da sobreposição de duas ondas harmónicas com amplitudes iguais mas frequências 
diferentes, traduzida por:

titi eEeEtE 21
00)( ωω += 			                    			         (1)

Compare com o resultado dado pela Eq. (4) do problema PR 3.14.

Resolução
Substituindo a Eq. (1) na Eq. (3.87) tem-se que a função de autocoerência é:
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Deste modo, o grau de coerência temporal, definido pela Eq. (3.88), vem dado por

2
1)( =τγ ( )τωτω 21 ii ee + 					               	                       (3)

A visibilidade é dada por
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Em contraste com o resultado dado pela Eq. (4) do problema PR 3.14, verifica-se que, no caso da sobreposição 
de duas ondas harmónicas com frequências diferentes, a visibilidade é uma função periódica do atraso temporal τ.
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3.13. Problemas propostos

PP 3.1. Uma lente convergente L, com um orifício circular no centro, é usada como um sistema de interferência de duas 
ondas (Fig. 3.18). A fonte de luz S é colocada de tal modo que a onda emergente do vidro da lente é plana, enquanto 
que a onda transmitida pelo orifício é esférica. O orifício tem um diâmetro D, enquanto que a espessura máxima da 
lente é δ.

Figura 3.18  – Geometria incluindo uma fonte pontual S, uma lente L com um orifício circular no centro 
e um plano de observação P.

a) Escreva as expressões analíticas das ondas que se vão sobrepor. Considere que ambas as ondas têm a 
mesma amplitude no plano P, situado a uma distância d da face de saída da lente.

b) Deduza uma expressão para intensidade no plano P em função da distância r ao eixo do sistema. Qual 
é a forma das franjas de interferência? 

PP 3.2. Um sistema óptico é constituído por duas camadas de um dieléctrico (1) com índice de refracção 1n  = 1.4 e três 
camadas de um outro dieléctrico (2) com índice de refracção 2n  = 2.5, depositadas alternadamente num substrato 
de vidro ( vn  = 1.50). A primeira camada a ser depositada é do dieléctrico (2). Mostre que o sistema funciona como 
um espelho de elevada reflectividade, se a espessura de cada camada for λ/4 e a incidência da luz for normal.

PP 3.3. Um filme de água (n = 4/3) de faces paralelas e com 300 nm de espessura encontra-se no ar. Se o 
filme for iluminado normalmente com luz branca (λ = 350 − 700 nm), qual o comprimento de onda da luz 
reflectida?

PP 3.4. O diâmetro do sétimo anel brilhante na experiência dos anéis de Newton decresce desde 1.55 cm para 
1.28 cm quando se introduz um líquido entre a lente e a placa de faces paralelas em que ela se apoia. Determine o 
índice de refracção desse líquido se se usar luz amarela de Sódio (λ = 589.3 nm) nessa experiência.

PP 3.5. Um filme com uma espessura d = 1 mm e um índice de refracção n = 1.5 é iluminado com luz monocromática 
de comprimento de onda λ = 600 nm. Observa-se então um padrão de franjas circulares de Haidinger. Determine 
o valor de p para a franja central ( 0=tθ ) e diga se essa franja é clara ou escura.

PP 3.6. Considerando a sobreposição de todas as ondas reflectidas na Fig. 3.14, obtenha a intensidade do campo 
reflectido resultante. Mostre que o resultado é igual ao obtido a partir das Eq.s (3.58) e (3.60).

PP 3.7. Um biprisma de Fresnel é iluminado por luz com comprimento de onda λ = 500 nm, proveniente de uma 
fonte pontual situada a uma distância de 20 cm. As franjas de interferência são observadas num ecrã situado 
a 80 cm do biprisma. Considerando que o biprisma tem um ângulo º3=α  e um índice de refracção n = 1.5, 
determine o espaçamento entre franjas consecutivas.



97

PP 3.8. Mostre que o espaçamento h entre as fontes virtuais S1 e  S2 no biprisma de Fresnel (Fig. 3.4) é dado por 
α)1(2 -= nsh , sendo s a distância entre o plano das fontes e o biprisma e α o ângulo de cada um dos prismas.

PP 3.9. A figura 3.19 ilustra uma experiência realizada com o espelho de Lloyd. A fonte pontual S, situada a uma 
distância h do espelho AB (l = 30 cm) emite, em todas as direcções, luz com comprimento de onda λ = 500 nm. 
Tem-se d = 1 cm e supõe-se h « d.

Figura 3.19 – Geometria para o espelho de Lloyd.

a) Exprima, em função dos parâmetros geométricos e ópticos do sistema, o espaçamento entre franjas 
sucessivas, bem como a extensão do campo de interferência (medida na perpendicular ao espelho AB).

b) Forma-se uma imagem de P com a ajuda de uma lente convergente com uma distância focal de 8 cm, 
situada a 10 cm de P. O espaçamento entre franjas no plano imagem é de  1 mm. Deduza o valor de h e o número 
de franjas brilhantes observadas.

PP 3.10. À saída de um interferómetro de Michelson, iluminado por uma fonte extensa de luz com comprimento 
de onda l , o feixe emergente é recolhido por uma lente delgada de distância focal  f. No plano focal imagem dessa 
lente são observados anéis de interferência. Mostre que a área da coroa circular, compreendida entre dois anéis 
brilhantes consecutivos, é constante, sendo independente da ordem desses anéis.

PP 3.11. Em cada um dos braços de um interferómetro de Michelson é colocado um tubo com 10  cm de comprimento, 
em que se fez o vácuo. O interferómetro é iluminado com luz amarela de sódio (λ = 589.3 nm) e alinhado de modo 
a observar-se franjas de igual inclinação. Quando se introduz ar num dos tubos, verifica-se a passagem de 20 franjas 
por um dado ponto do plano de observação. Determine a pressão do ar nesse tubo. Considere que o índice de 
refracção do ar, n, se relaciona com a pressão, P, na forma n = kP, onde                       atmos 1- .

PP 3.12. Um interferómetro de Fabry-Perot tem uma finesse Φ = 40000 e uma separação entre os espelhos                   
d = 4 cm. O espaço entre os espelhos é preenchido por ar. Calcule o coeficiente de reflexão r dos espelhos, a banda 
espectral livre bel)( l∆ , a largura de uma linha espectral γ e o poder de resolução cromática ℜ  do interferómetro.

PP 3.13. Um interferómetro de Fabry-Perot é constituído por uma cavidade de ar (n = 1), limitada por duas 
superfícies com um coeficiente de reflexão            , separadas de 2 cm. Considerando um comprimento de 
onda λ = 500 nm, determine a ordem máxima de interferência, o coeficiente de finesse, o intervalo mínimo de 
resolução de comprimentos de onda e o poder de resolução cromática.

PP 3.14. Determine o comprimento de coerência e o tempo de coerência da luz branca, cujo espectro está 
compreendido entre os comprimentos de onda 780 nm (cor vermelha) e 390 nm (cor violeta).

PP 3.15. Obtenha o resultado dado pela Eq (3.85) para a visibilidade de um padrão de franjas de interferência.

k = 3x10–4

r = 0.95
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Capítulo 4

DIFRACÇÃO

O fenómeno de difracção ocorre sempre que a fase ou a amplitude de parte da frente de onda se altera, após 
a interacção com algum obstáculo, transparente ou opaco. Na realidade, não existe uma diferença substancial 
entre interferência e difracção, sendo a distinção entre os dois fenómenos de certo modo arbitrária. Fala-se 
habitualmente em interferência quando se considera a sobreposição de um número reduzido de ondas, enquanto 
que o termo difracção é aplicado nos casos em que o número de ondas interferentes é elevado.

A descrição rigorosa do fenómeno da difracção baseia-se nas equações de Maxwell e na consideração 
das condições de fronteira associadas com o obstáculo em causa. Contudo, a aplicação dessa teoria revela-se 
geralmente uma tarefa complicada, pelo que em muitos casos se torna conveniente utilizar uma teoria escalar 
aproximada. Esta teoria aproximada é baseada no chamado princípio de Huygens, segundo o qual cada ponto 

de uma dada frente de onda pode ser considerado como uma fonte de ondas esféricas elementares, com a mesma 

frequência da onda primária. A amplitude do campo óptico em qualquer ponto do espaço num momento posterior 

é dada pela sobreposição de todas essas ondas elementares.

A utilização desta teoria escalar resulta no chamado integral de difracção. Pode-se obter soluções analíticas 
para este integral recorrendo a duas aproximações diferentes. Numa das aproximações, considera-se que o plano de 
observação e a fonte de luz se encontram muito afastados do local de obstrução da frente de onda, tendo-se então a 
chamada difracção de Fraunhofer. Quando essas condições não se verificam tem-se a chamada difracção de Fresnel.

4.1. O integral de difracção

Considere-se um orifício num ecrã iluminado por uma onda plana, dada por:
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= 								           (4.1)

A onda emergente do orifício é uma onda esférica, cuja amplitude complexa se pode escrever na forma:
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 ⋅-=)( 						             		    (4.2)

onde C é uma constante, proporcional à amplitude da onda incidente, iE , e à área do orifício, s∆ .
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 Considere-se a Fig. 4.1, que ilustra o caso em que há dois orifícios: um situado em P1 , a uma distância 

1001 rrr 

-=r01  do ponto de observação P0 , e outro situado em P2 , a uma distância 1001 rrr 

-=  r2
r02  de  P0 . O campo 

em P0  devido ao orifício Pj  (j = 1,2) é:
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onde jQ  é uma constante, conhecida como factor de obliquidade, que depende do ângulo, ϕ , entre jr0


 e a 
normal a js∆ . Essa dependência com o ângulo ϕ  pode ser traduzida na forma

2
)cos(1)0()( ϕϕ +

= QQ 							         (4.4)

Deste modo, verifica-se que o factor de obliquidade é máximo para ϕ = 0 e que se anula para pϕ = rad, 
traduzindo assim o facto de a onda proveniente do orifício não se propagar para trás, no sentido da fonte.

Figura 4.1 - Geometria para a aplicação do princípio de Huygens ao caso de dois orifícios.

O campo total em P0  é dado pela sobreposição das ondas provenientes de P1 e de P2 :
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No caso de se ter N orifícios, a Eq. (4.5) é generalizada na forma:
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No limite em que js∆  tende para zero, o orifício converte-se numa fonte elementar de Huygens, com uma 
área elementar ds. Pode-se considerar qualquer abertura como um conjunto destas fontes elementares e converter 
o somatório da Eq. (4.6) num integral. Neste processo, jr0



 é substituído por R


, que indica a posição da fonte 
elementar de Huygens relativamente ao ponto de observação P0 , e jr  é substituído por r , que indica a posição 
dessa mesma fonte elementar relativamente à origem do sistema de coordenadas. Por outro lado, atendendo a 
que o factor de obliquidade Qj varia lentamente com o ângulo formado entre jr0



 e a normal a js∆ , pode-se tratar 
este factor como sendo uma constante, Q. Nestas circunstâncias, a Eq. (4.6) converte-se na seguinte expressão:
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Este resultado constitui o chamado integral de difracção e mostra que o campo em P0 pode ser encarado 
como o resultado da sobreposição das múltiplas ondas elementares emitidas pelos orifícios imaginários que 
compõem a abertura Σ . Esta é a essência do princípio de Huygens.
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A grandeza do factor de obliquidade pode ser encontrada comparando o resultado obtido a partir da Eq. (4.7) 
com a previsão da óptica geométrica para o campo no ponto de observação. Mostra-se no problema PR 4.1 que 

l
iQ = 									           (4.8)

onde l  é o comprimento de onda da luz.

O facto de o integral de difracção, dado pela Eq. (4.7), exprimir o campo )( 0rE 

 na forma de um integral 
sobre a abertura Σ  permite obter um resultado bastante importante, que corresponde ao chamado princípio de 

Babinet. Segundo este princípio, que se demonstra no problema PR 4.2, a distribuição da intensidade do padrão 
de difracção devido a um objecto opaco é igual à distribuição da intensidade do padrão de difracção produzido 
por uma abertura com a mesma forma e dimensões desse objecto. 

4.2. Difracção de Fraunhofer

Na difracção de Fraunhofer requer-se que, tanto a fonte de luz como o ponto de observação, estejam bastante 
afastados da abertura, de modo a que se possa considerar que, tanto a onda incidente como a onda difractada, 
são constituídas por ondas planas. Partindo da Eq. (4.7) e considerando a geometria da Fig. 4.2, mostra-se no 
problema PR 4.3 que o campo difractado no ponto de observação P0 (xp  , yp ) é dado por:

Figura 4.2 - Geometria para o estudo da difracção de Fraunhofer por uma abertura arbitrária.
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Na obtenção da Eq. (4.9) considerou-se que |R0  − R| <<  R0  e  x2 + y2 << 2λR0 , sendo R a distância entre 
os pontos P(x, y)  e P0 (xp  , yp ) e R0  a distância entre o centro da abertura, de coordenadas (0,0), e o mesmo ponto 
P0 (xp  , yp ).
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O resultado dado pela Eq. (4.9) satisfaz a chamada condição de Fraunhofer, segundo a qual a fase do campo 
deve ser uma função linear das coordenadas da abertura, sendo o campo difractado constituído por um conjunto 
de ondas planas. 

No caso de a abertura estar coberta por um filme com uma função de transmissão f(x,y), o campo Ei  na     
Eq. (4.7) deve ser substituído por  f(x, y)Ei , que representa o campo transmitido por esse filme. No caso geral, a 
função f(x,y) é complexa, traduzindo  as variações de amplitude e de fase sofridas pelo campo incidente no filme. 
Nestas circunstâncias, a Eq. (4.9) pode ser generalizada e apresentar-se na forma 
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onde  kx  =  kxp / R0  ,      ky  = kyp / R0 					   

As integrações na Eq. (4.11) podem ser realizadas entre ∞-  e ∞+ , assumindo-se nesse caso que a função 
de transmissão f(x,y) é estendida de tal maneira que se anula fora da região da abertura. Deste modo, pode-se 
concluir da Eq. (4.11) que o padrão de difracção de Fraunhofer para a amplitude do campo eléctrico é proporcional 

à transformada de Fourier bi-dimensional da função de transmissão da abertura.

4.2.1. Difracção por uma fenda simples

Consideremos o caso de uma fenda simples, com uma largura a, centrada na origem e paralela ao eixo dos 
y, com um comprimento b, tal que b»λ. A função de transmissão é dada por
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O campo difractado pode ser obtido substituindo a Eq. (4.12) na Eq. (4.11). Mostra-se no problema PR 4.4 
que a luz se espalha predominantemente no plano xz, sendo a distribuição da intensidade dada por:
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Na Eq. (4.13), I0 é o valor máximo da intensidade e  α = kaxp / 2R0 = (ka / 2)senθ, sendo senθ = xp /R0 . 

A função

w
ww )sen()senc( ≡ 							             	 (4.14)

é conhecida como a função seno cardinal. Na Fig. 4.3 mostra-se os gráficos das funções senc(w) e senc2(w). A 
função senc(w) assume o valor máximo senc(w) = 1 para w = 0 e apresenta zeros para 

pmw = 								              	 (4.15)

sendo m um número inteiro diferente de zero. A dimensão do padrão de difracção pode ser caracterizada pelo 
primeiro zero ( 1±=m ), podendo-se verificar que essa dimensão é tanto maior quanto mais estreita for a fenda.
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Figura 4.3 - Representação gráfica das funções senc(w) e senc2(w).

4.2.2. Difracção por várias fendas

Considere-se um conjunto de N aberturas idênticas, distribuídas ao longo do eixo dos x, sendo f(x) a função 
de transmissão da abertura situada na origem do eixo. De acordo com a Eq. (4.11), o padrão de difracção produzido 
por esse conjunto de aberturas é dado pela transformada de Fourier da correspondente função de transmissão, 
mostrando-se no problema PR 4.6 que essa transformada é dada por:
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Na Eq. (4.16), F indica a transformada de Fourier, enquanto na Eq. (4.17), δ é a função delta de Dirac e          
xn é a posição da n-ésima abertura. 

A Eq. (4.16) traduz o chamado teorema matricial, segundo o qual o padrão de difracção determinado por 

uma dada distribuição de aberturas idênticas é igual ao produto do padrão de difracção devido a uma só dessas 

aberturas pelo padrão de difracção correspondente a um conjunto de fontes pontuais com a mesma distribuição 

espacial da rede de aberturas. 
O teorema matricial pode ser utilizado para calcular o padrão de difracção produzido por N fendas 

idênticas, paralelas ao eixo dos y, cada uma com largura a e espaçadas entre si de d. Nestas condições, tem-se 
xn = (n − 1)d . A distribuição de intensidade correspondente a uma dessas fendas é dada pela Eq. (4.13). Por outro 
lado, tem-se  
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Usando o teorema matrical, a distribuição de intensidade no padrão de difracção correspondente às N 
fendas é dada por:
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Na Eq. (4.20), o factor 
2

2sen
α

α  é conhecido por factor de forma, enquanto que o factor 
β
β

2

2

sen
sen N , resultante 

da interferência entre a luz proveniente das diferentes fendas, é conhecido por factor da rede.

Um dispositivo com múltiplas fendas, como o que foi considerado anteriormente, constitui um exemplo 
de uma rede de difracção. Em geral, esta designação aplica-se a qualquer estrutura periódica constituída por 
elementos difractivos, sejam eles aberturas ou obstáculos, susceptível de alterar a amplitude e/ou a fase de uma 
onda nela incidente. A rede de difracção mais comum é constituída por vários milhares de estrias paralelas, 
desenhadas na superfície de uma lâmina de vidro.

Quando se tem apenas duas fendas, a Eq. (4.20) pode ser apresentada na forma 

β
α

α 2
2

2

0 cossenII =
sen2 							             	 (4.21)

Quando a largura das fendas (a) tende para zero, então 1sen
≈

α
α  e a Eq. (4.21) representa a intensidade 

devida a um par de fontes lineares, como se considera na experiência de Young. 

Se, por outro lado, for d = 0 (as duas fendas coincidem), então β = 0  e a Eq. (4.21) reduz-se à Eq. (4.13), que 
dá a difracção por uma fenda simples. Pode-se, portanto, considerar que a Eq. (4.21) para o caso de duas fendas é 
gerada por um termo de interferência, cos2β , modulado por um termo de difracção, (sen2α) / α2 . 

4.2.3. Difracção por uma abertura circular

No caso da difracção por uma abertura circular, torna-se conveniente para efeitos de cálculo dos integrais 
na Eq. (4.11) usar coordenadas polares, tanto no plano da abertura como no plano de observação. No plano 
da abertura, considera-se x = rcosφ  e  y = rsenφ , tendo-se uma área elementar dada por rdrdφ . No plano de 
observação tem-se  xp = r0cosθ  e  yp = r0senθ

 
.	  				  

Considerando que a abertura tem um raio a e que a sua função de transmissão é f(r,φ) = 1 (r ≤ a, 0 ≤ φ  ≤ 2π), 
a Eq. (4.11) assume o aspecto:   

∫ ∫ 







--=

a

P rdrd
R
rrikAE

0

2

0 0

0 )cos(exp
p

φφθik rr 				          	 (4.22)

O integral da Eq. (4.22) pode ser calculado analiticamente em termos das funções de Bessel, obtendo-se o 
seguinte resultado para a intensidade no plano de observação:



105

2

00

)00122

)/(
/(

4 







=

Rkar
RkarJ

SAI 						                      (4.23)

onde J1 (u) é a função de Bessel de primeira espécie de ordem 1 e S é a área da abertura circular. Considerando que 
( ) 2/1/)(lim 10

=
→

uuJ
u

, tem-se que a intensidade no centro do padrão de difracção é I0 = |A|2 S 2. 

Na Fig. 4.4 representam-se as funções 
u

uJ )(2 1  e 
2

1 )(2






u
uJ .

Figura 4.4 – Representação das funções uuJ /)(2 1  (curva a cheio) e [ ]2
1 /)(2 uuJ (curva a tracejado).

O padrão de difracção descrito pela Eq. (4.23) é conhecido por padrão de Airy, sendo constituído por um 
disco central brilhante e por um conjunto de anéis concêntricos, alternadamente escuros e brilhantes. O raio do 
primeiro anel escuro é habitualmente usado para caracterizar o tamanho desse padrão de difracção e é dado por:

a
Rr
2

22.1 0
01

l
=01 							             	 (4.24)

Estes resultados são de grande importância prática. Deve notar-se, por exemplo, que a imagem de uma 
fonte pontual, formada por um sistema óptico ideal, constituído por espelhos ou lentes circulares, tem o aspecto 
de um padrão de Airy.

4.3. Difracção de Fresnel 

A difracção de Fraunhofer, produzida por uma dada abertura, verifica-se quando ela é iluminada por ondas 
planas e o ponto de observação se encontra bastante afastado dessa abertura. Nestas circunstâncias, tem-se que 
a fase do campo difractado varia linearmente com os parâmetros da abertura. Nesta secção considera-se que ou 
a fonte ou o plano de observação, ou ambos, se encontram relativamente próximos da abertura, pelo que será 
necessário ter em devida conta a curvatura da frente de onda. 
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Os padrões de difracção de Fresnel podem entender-se na continuidade entre dois casos extremos: os 
padrões correspondentes à óptica geométrica, por um lado, e os padrões da difracção de Fraunhofer, por outro. 
Na óptica geométrica supõe-se que a luz se propaga ao longo de trajectórias rectilíneas, sendo por isso de esperar 
poder observar-se uma imagem nítida da abertura no plano de observação. Na prática, observa-se uma imagem 
deste tipo apenas se a distância entre o plano de observação e o plano da abertura for bastante curta. Na difracção 
de Fraunhofer, em que essa distância deve ser efectivamente muito grande, a imagem corresponde a um padrão de 
franjas que não tem qualquer semelhança aparente com a forma da abertura. A difracção de Fresnel corresponde 
a uma situação intermédia. Neste caso, a imagem observada é essencialmente uma imagem da abertura, embora 
os seus contornos não sejam nítidos e apresentem franjas.

4.3.1. Propagação livre de uma onda esférica 

Considere-se uma frente de onda esférica proveniente de uma fonte pontual situada em P1 e que no instante 
t  tem um raio Rf , como se representa na Fig. 4.5. Com o objectivo de determinar o campo no ponto de observação 
P0  devido a esta frente de onda, considera-se um conjunto de superfícies esféricas de raios R = R0 , R0 + λ/2,

R0 + 2λ/2, ..., R0 + jλ/2 ,...  sendo R0  a distância entre a frente de onda e o ponto P0 , medida sobre a linha que liga 
P1  e P0 . Estas superfícies esféricas dividem a frente de onda num certo número de zonas com a forma de anéis, 
chamadas zonas de Fresnel.

Figura 4.5 - Geometria para a construção das zonas de Fresnel correspondentes a uma onda esférica.

Mostra-se no problema PR 4.10 que o campo no ponto de observação P0 devido apenas à zona de Fresnel 
definida entre Rj = R0 + jλ/2

 
 e  Rj-1 = R0 + ( j − 1)λ/2  é dado por:

)(

0

0
0

0)1(2)( RRik

f

jj
j

fe
RR

EQ
iPE +-

+
-=

l −ik 				           		  (4.25)

A alternância de sinal do campo correspondente a zonas de Fresnel consecutivas deve-se à diferença de 
fase entre as ondas provenientes dessas zonas, uma vez que a distância de propagação para pontos similares de 
zonas adjacentes difere precisamente de λ/2. Deste modo, as contribuições para o campo no ponto P0 devidas a 
zonas adjacentes tendem a anular-se entre si. Contudo, esse cancelamento não é perfeito, dado que o factor de 
inclinação varia, ainda que ligeiramente, de zona para zona.
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Tendo em consideração a alternância do sinal, o campo total no ponto P0  devido a N zonas de Fresnel é 
dado a partir da Eq. (4.25) por:

NEEEEE ±⋅⋅⋅-+-= 321 				              	       	 (4.26)

Os elementos do somatório na Eq. (4.26) podem ser reagrupados na forma:

⋅⋅⋅+







+-+








+-+=

22222
5

4
33

2
11 E

E
EE

E
EE

E 		     	    	 (4.27)

Atendendo a que a variação do factor de inclinação de uma dada zona para as adjacentes é desprezável, 
pode-se considerar que cada um dos parênteses na Eq. (4.27) é nulo. Nesta aproximação, considerando que o 
factor de inclinação para a última zona de Fresnel (correspondente a pϕ = ) é nulo, tem-se da Eq. (4.27) que

2
1E

E ≈ 								                        (4.28)

Este resultado, surpreendentemente simples, mostra que o campo total no ponto de observação P0  , produzido 

por uma onda esférica não obstruída, é igual a metade da contribuição devida à primeira zona de Fresnel.

4.3.2. Difracção por aberturas ou obstáculos circulares

A análise realizada na secção anterior pode ser facilmente aplicada ao caso da difracção de Fresnel por 
aberturas circulares. Considerando um ponto de observação P0 sobre o eixo da abertura e assumindo que esta se 
encontra inteiramente preenchida por um número inteiro, N, de zonas de Fresnel, são possíveis duas situações. 
Se N for par, tem-se:

( ) ( ) ( )NN EEEEEEE -++-+-= -14321 ...
 
 ≈ 0		   	       	 (4.29)

dado que as contribuições adjacentes são praticamente iguais em módulo. Por outro lado, se N for ímpar, tem-se:

( ) ( ) ( )NN EEEEEEEE -------= -154321 ...   ≈ 1E 		        	 (4.30)

Este resultado pode parecer surpreendente, quando comparado com o da Eq. (4.28). De facto, verifica-se 
que a interposição de um ecrã opaco e apenas com um pequeno orifício, apesar de bloquear quase completamente 
a frente de onda, faz com que a intensidade em P0 quadruplique o seu valor comparativamente com a situação de 
propagação livre da onda! Obviamente, o princípio da conservação da energia exige que exista outros pontos em 
que a intensidade tenha diminuído. Dada a simetria da configuração, é de esperar neste caso que se observe, num 
plano perpendicular ao eixo da abertura, um padrão de franjas circulares.

Ondas planas

Na discussão anterior considerou-se que a onda incidente na abertura era uma onda esférica. No caso de 
a onda incidente ser uma onda plana, a análise do problema torna-se mais simples. Nesta situação, as zonas de 
Fresnel correspondem a anéis planares definidos no plano da frente de onda. 
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Usando a definição dada na Secção 4.3.1 para as zonas de Fresnel e o teorema de Pitágoras, tem-se que o 
raio da n-ésima zona, rn , se relaciona com a distância  R0  entre a abertura e o ponto de observação na forma

2
0

2

0
2

2
RnRrn -






 +=

l 							       (4.31)

ou seja:

4

2
2

0
2 ll nRnrn += 							             	 (4.32)

Para valores não muito elevados de n, pode-se desprezar o segundo termo na Eq. (4.32), obtendo-se então 
o resultado:

0Rnrn l= 							             	 (4.33)

Verifica-se da Eq. (4.33) que, para um dado ponto de observação no eixo da abertura, os raios das zonas de 

Fresnel são proporcionais à raiz quadrada de números inteiros.

Obstáculos circulares

No caso de se ter um obstáculo opaco com forma circular, e assumindo que ele bloqueia as primeiras l  
zonas de Fresnel, o campo num ponto P0 do seu eixo será dado por:

Nll EEEE ++-= ++ ...21 						            	 (4.34)

Como se referiu antes, tem-se 0≈NE , porque 0→NQ . A soma (4.34) pode ser calculada como se fez na 
Secção 4.3.1, obtendo-se:

	
2

1+≈ lE
E 							             	 (4.35)

Ou seja, verifica-se a existência de uma mancha brilhante no eixo do obstáculo, o que constitui um resultado 
de todo imprevisto pela óptica geométrica. A mancha em causa é conhecida por mancha de Poisson, precisamente 
em homenagem ao cientista francês que considerava ridícula a hipótese da sua existência. A intensidade dessa 
mancha é apenas ligeiramente inferior à da onda não obstruída.

4.3.3. Placas zonadas

A análise feita nas secções anteriores. mostrou que as contribuições das zonas de Fresnel adjacentes tendem 
a anular-se umas às outras. Este facto sugere que a intensidade no ponto de observação pode ser significativamente 
aumentada, bloqueando alternadamente as zonas de Fresnel. Por exemplo, se se bloquear as dez primeiras zonas pares, 
deixando passar apenas as primeiras dez zonas ímpares, tem-se que o campo no ponto de observação será  E ≈ 10E1. 
Tendo em consideração que o campo nesse mesmo ponto devido à onda não obstruída é igual a E1/2 , verifica-se que esta 
técnica permitirá, neste caso, aumentar a intensidade no ponto de observação 400 vezes! Um dispositivo construído 
com este objectivo, apresentando anéis alternadamente opacos e transparentes, designa-se por placa zonada.

Considerando a geometria da Fig. 4.6, mostra-se no problema PR 4.12 que o raio rn da n-ésima zona de 
Fresnel se relaciona com as distâncias  Zf  e  Z na forma
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Figura 4.6 - Geometria para o desenho de uma placa zonada.

2
11

nf r
n

ZZ
l

=+ 							             	 (4.36)

Verifica-se da Eq. (4.36) que, uma vez definidas as posições da fonte e do ponto de observação (Zf  e Z fixos), 
os raios, rn , das zonas opacas usadas para bloquear a luz são proporcionais à raiz quadrada dos números inteiros, 
n. Na Fig. 12.3 encontra-se representada uma placa zonada com 14 zonas de Fresnel.

Figura 4.7 – Aspecto de uma placa zonada de Fresnel

			 

O aspecto da Eq. (4.36) mostra que uma placa zonada deverá funcionar de modo semelhante a uma lente 
delgada, tendo uma distância focal dada por:

ln
rf n

2
= 								              	 (4.37)

Apesar da semelhança apontada, existem algumas diferenças significativas entre uma placa zonada e uma 
lente convencional. De facto, deve ter-se presente que o funcionamento da placa zonada se baseia no fenómeno da 
difracção da luz, enquanto o funcionamento de uma lente convencional se baseia na lei da refracção. Pode notar-
-se da Eq. (4.37), por exemplo, que uma placa zonada se caracteriza por uma aberração cromática significativa.

	 À distância f dada pela Eq. (4.37), cada anel da placa zonada encontra-se preenchido exactamente por 
uma zona de Fresnel da frente de onda plana, tendo-se nesse ponto um máximo principal da distribuição da 
intensidade. A essa distância f chama-se distância focal de primeira ordem da placa zonada. De facto, contrastando 
com o que acontece com as lentes convencionais, no caso de uma placa zonada verifica-se a existência de outros 
pontos focais de ordem superior, a distâncias f/3, f/5, f/7, ... dessa placa. A distância f/3, por exemplo, corresponde 
à situação em que cada anel da placa zonada é preenchido por três zonas de Fresnel. Os campos devidos a duas 
destas zonas cancelam-se mutuamente, restando então a contribuição da terceira zona.
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4.3.4. Difracção por uma abertura rectangular

Considere-se o esquema da Fig. 4.8, onde se assume que uma abertura rectangular situada no plano 
(x,y) é iluminada por uma onda esférica )exp()/( 0 ffi RkiREE






⋅-= , originada numa fonte pontual situada em 
(xf  , yf  , Zf ). Partindo da Eq. (4.7) e considerando o factor de obliquidade como uma constante, mostra-se no  
problema PR 4.15 que o campo no ponto de observação P0 (xp  , yp  , Z ) pode ser apresentado na forma:

Figura 4.8 - Geometria para a análise da difracção de Fresnel por uma abertura rectangular.
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ds 					                 		                  (4.39)
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
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2
sen)( ds 					                    		                  (4.40)

são os chamados integrais de Fresnel,

fs ZZDxxu l/2)( -= ZZ , 							       (4.41)

fs ZZDyyv l/2)( -= ZZ , 						                      (4.42)

DZxxZx fpfs /)( += Zx , 						                      (4.43)

DZyyZy fpfs /)( +=  Zy 						                      (4.44)

e   fZZD += . Na Eq. (4.38), 

ikd
l edEE -= )/( 0  								        (4.45)

representa o campo que existiria  no ponto de observação se não houvesse qualquer obstáculo, sendo d a distância 
entre a fonte e o ponto de observação. A intensidade no ponto de observação pode apresentar-se na forma:
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							       (4.46)

onde [ ] 2

1
)()(12

w
wwiSwCV -=



V12 iS  e Il  é a intensidade correspondente à onda não obstruída no ponto de observação.

Figura 4.9 - Espiral de Cornu, obtida dispondo os valores de C(w) em função de S(w).

Na Fig. 4.9 representa-se o gráfico de C(w) em função de S(w). Este gráfico é conhecido por espiral de 
Cornu, em honra de Marie Alfred Cornu (1841-1902), que foi a primeira pessoa a usá-lo no cálculo dos integrais 
de Fresnel. É de notar que C(w) e S(w) são funções ímpares, tendo-se C(−w) = −C(w)  e S(−w) = −S(w). Na 
prática, para se usar a espiral de Cornu, deve-se começar por marcar sobre esta curva as posições dos limites w1 
e w2  da abertura. O resultado de cada um dos integrais na Eq. (4.38) é dado pelo comprimento do vector [ ] 2

1
)()(12

w
wwiSwCV -=



V12 que 
une esses dois pontos, 

No caso de não haver qualquer obstrução da frente de onda, tem-se, segundo a direcção do eixo dos x, que 
u1 = −∞ (correspondente ao ponto (-0.5, -0.5)) e u2 = ∞  (correspondente ao ponto (0.5, 0.5)). O comprimento 
do vector que liga esses dois pontos é 2 . Segundo a direcção do eixo dos y obtém-se um valor igual, pelo que a 
intensidade no ponto de observação, dada pela Eq. (4.46), é simplesmente IP = Il , como seria de esperar.

4.3.5. Difracção por uma fenda

Se em vez da abertura rectangular se tiver uma fenda longa, paralela ao eixo dos y, deverá considerar-se 
y1  → −∞ e y2  → ∞, pelo que v1  → −∞ e v2  → ∞. Considerando a espiral de Cornu, representada na Fig. 4.9,
tem-se que o ponto correspondente a v1  → −∞  tem coordenadas (-0.5, -0.5), enquanto que o ponto correspondente 
a v2  → ∞ tem coordenadas (0.5, 0.5). A distância entre esses dois pontos é 2)(12 =vV



V12 , pelo que a intensidade, 
neste caso, é dada por:
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		                    	       	 (4.47)

4.3.6. Difracção por um ecrã opaco semi-infinito

O padrão da distribuição da intensidade na difracção de Fresnel, determinada por um ecrã opaco semi-
infinito, pode ser descrito a partir da situação da fenda considerada anteriormente. De facto, para se ter um ecrã 
na forma de um semiplano opaco, basta remover um dos semi-planos que definem essa fenda. Supondo que se 
remove o semiplano correspondente aos valores positivos de x, tem-se que x2  → ∞, pelo que u2  → ∞. Deste modo, 
ter-se-á C(u2 ), S(u2 ) →  1 , pelo que a intensidade num ponto para além do semiplano será dada a partir da Eq. 
(4.47) por:                          
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Se o ponto de observação P0 estiver ao nível do bordo do semiplano (P0 ≡ Pb na Fig. 4.10a), tem-se u1 = 0 
e C(0) = S(0) = 0, pelo que Ip = 1/4.  À medida que o ponto P0 mergulha na sombra geométrica do semiplano                    
(P0 ≡ Ps) o valor (positivo) de u1 vai aumentando, o comprimento do vector )(12 uV



V12  vai diminuindo e a intensidade 
decresce monotonamente. Contudo, quando o ponto P0  se desloca para fora da sombra geométrica (P0 ≡ Pl ) 
e à medida que se afasta do bordo do semiplano, verifica-se que o comprimento do vector )(12 uV



V12  começa por 
aumentar e adquire, posteriormente, um comportamento oscilatório amortecido em torno de 2)(12 =uV



V12 , 
correspondente à evolução de u1 ao longo da espiral centrada em (-0.5, -0.5). A variação da intensidade com u1  
encontra-se representada na Fig. 4.10b.

                                     

                                                                 (a)                                                                                                                (b)

Figura 4.10 – a) Difracção de Fresnel determinada por um semiplano opaco e b) variação da respectiva intensidade.
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4.4. Problemas resolvidos 

PR 4.1. Considere uma abertura Σ situada no plano xy, iluminada por uma onda plana de amplitude Ei , que 
se propaga paralelamente ao eixo dos z. Partindo do integral de difracção, dado pela Eq. (4.7), desprezando a 
contribuição devida às ondas difractadas pela fronteira da abertura e usando o resultado previsto pela óptica 
geométrica para o campo no ponto de observação, mostre que o factor de obliquidade é dado pela Eq. (4.8).

Resolução
A figura 4.11 ilustra a abertura Σ. A área correspondente à fonte elementar de Huygens no P1 é dada, em 

coordenadas polares, por ds = rdrdφ . Atendendo a que  E(r) = Ei = const. para z = 0, tem-se que o integral de 
difracção, dado pela Eq. (4.7), que permite calcular o campo no ponto P0 da Fig. 4.11, se pode escrever na forma:

Figura 4.11 - Geometria para o cálculo da grandeza do factor de obliquidade.
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onde rm(φ)  é o valor máximo de r, correspondente à periferia da abertura. Considerando a geometria da Fig. 4.11 
tem-se que 222

0 Rrz =+ , pelo que a variável de integração r na Eq. (1) se pode escrever em termos de R usando a 
relação rdr = RdR. Os limites inferior e superior de integração são, respectivamente,
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pelo que a Eq. (1) fica:
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Efectuando a integração sobre R, obtém-se:
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A segunda contribuição na Eq. (4) corresponde à soma das ondas difractadas pela fronteira da abertura. 
Esta contribuição pode geralmente ser desprezada, dado que o produto kRm(φ) varia de vários múltiplos de 2π  
quando se integra em torno da abertura. Deste modo, o resultado da Eq. (4) pode apresentar-se na forma:

og
ikz

i
ikzi QEieQEie

ik
QEzE llp

-=-== -- 00
2)( 0
 2πQE

ik
QEie QEog 	     		    		       (5)

onde 
0ikz

iog eEE -=Eog
						        		       (6)

é o resultado previsto pela óptica geométrica para o campo no ponto P0 , situado no eixo dos z, a uma distância  z0 
da abertura. Para que a igualdade E(z0) = Eog 

 se verifique, deve ter-se:

1=- Qil 									              (7)

Ou seja, tem-se

l
iQ = 									              (8)

PR 4.2. Partindo do integral de difracção dado pela Eq. (4.7), mostre que as intensidades correspondentes à 
difracção por duas aberturas complementares são iguais (Teorema de Babinet).

Resolução
A fórmula de difracção, dada pela Eq. (4.7), exprime o campo )( 0rE   na forma de um integral sobre a 

abertura Σ . Essa abertura pode ser considerada como a soma de duas partes complementares, 1Σ  e 2Σ , tais que 

21 Σ+Σ=Σ . Deste modo, o campo no ponto de observação P0  será dado, a partir da Eq. (4.7), pela soma dos 
integrais calculados sobre 1Σ  e sobre 2Σ . O integral sobre 1Σ  dá o campo )( 01 rE 

, que existiria no ponto P0 se a 
abertura se resumisse apenas a essa parte, enquanto o integral sobre 2Σ  dá o campo )( 02 rE 

, que haveria nesse 
mesmo ponto se existisse apenas esta parte da abertura. Deste modo, tem-se

)()()( 02010 rErErE 

+= 				      			        (1)

Ou seja, o campo correspondente à abertura total obtém-se somando os campos correspondentes às duas 
aberturas complementares.

A Eq. (1) é particularmente útil quando o cálculo do campo difractado por uma dessas aberturas, por 
exemplo 1Σ , é relativamente complicado, podendo ser substituído pela diferença entre os campos correspondentes 
à abertura total, Σ , e à abertura complementar, 2Σ . 

Uma situação de especial interesse acontece quando o campo no ponto P0 correspondente à abertura Σ  é 
zero ou desprezável. Neste caso, a Eq. (1) dá

)()( 0201 rErE 

-= 					           			        (2)

Como a intensidade é proporcional ao quadrado do módulo do campo, tem-se que as intensidades 
correspondentes às duas aberturas complementares são iguais.



115

PR 4.3. Considere a geometria da Fig. 4.2 e assuma as condições |R0 − R|< R0  
 e   x2 + y2 < 2λR0 

, sendo R a 
distância entre os pontos P(x, y) e P0 (xp  , yp), enquanto R0 é a distância entre o centro da abertura, de coordenadas 
(0,0) e o mesmo ponto P0 (xp  , yp). Partindo do integral de difracção, dado pela Eq. (4.7), mostre que o campo no 
ponto de observação P0 (xp  , yp) é dado pelas Eq.s (4.9) e (4.10).

Resolução
Considerando a geometria da Fig. 4.2, tem-se que a distância entre o ponto P na abertura e o ponto de 

observação P0 é dada por:

2222 )()( zyyxxR pp +-+-= 			         			         (1)

Por outro lado, a distância R0 entre o centro da abertura e o ponto de observação P0 é:

2222
0 zyxR pp ++= 					           			        (2)

A partir das Eq.s (1) e (2), tem-se:
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Na obtenção do resultado final na Eq. (3) considerou-se a situação 

           |R0 − R|« R0 , 							                             (4)

Usando a Eq. (3), o integral de difracção dado pela Eq. (4.7) fica:

dxdy
R
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onde 
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QE

					           			        (6)

Na obtenção da Eq. (5) R foi substituído por R0  no denominador da Eq. (4.7).
 
Quando o ponto de observação P0 está suficientemente afastado da abertura, tem-se:

0

22

2 R
yx

l
+  « 1 					                        		        (7)

podendo-se então desprezar o segundo termo na exponencial da Eq. (5) e obter o resultado   
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PR 4.4 
a) Caracterize o padrão de difracção devido a uma abertura rectangular, cuja função de transmissão é dada 

pela Eq. (4.12).
b) Partindo do resultado obtido na alínea anterior, obtenha a expressão dada na Eq. (4.13) para a distribuição 

de intensidade correspondente a uma fenda de largura a.

Resolução
a) Introduzindo a Eq. (4.12) na Eq. (4.11) tem-se:

∫∫
--

=
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b

b

yik
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a

xik
P dyedxeAE yxeikxx dx eikyy dy
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xSA
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α
α

α sensen
=SA 						            (1)

onde  

022 R
kaxak px

x ==α ,			      				         	      (2)

022 R
kbybk py

y ==α  				          			        	      (3) 

e S = ab é a área da abertura. 

A função

)senc()sen( w
w

w
≡ 							        	      (4)

encontra-se representada Fig. 4.3. Os zeros da função senc(w) ocorrem para

w = mπ	 						            		       (5)

sendo m um número inteiro diferente de zero. Por outro lado, usando a regra de L’Hopital, tem-se

1
1

)cos(lim)sen(lim
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

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

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w
w

w
ww

			         			        (6)

que corresponde ao máximo central da função senc(w). A localização dos outros extremos desta função é dada 
pela condição

( ) 0)senc(
=

dw
wd

dw 	
							            (7)

que dá,

tg(w) = w	 						            		       (8)
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As soluções desta equação transcendente podem ser determinados gráfica ou numericamente, obtendo-se 
p4303.1±=w , p4590.2± , p4707.3± ...

A distribuição da intensidade no padrão de difracção de Fraunhofer produzido pela abertura rectangular 
é dada por:

yxp II αα 22
0 sencsenc= 						                            (9)

onde 

( )2
0 ASI = 						           	       		      (10)

representa o máximo da intensidade, que ocorre para 0== yx αα . Os mínimos da intensidade ocorrem para 
pα nx =  ou para pα my = , sendo n e m números inteiros. Pode-se verificar que as dimensões do padrão de 

difracção, dadas pelas coordenadas px  e py  do plano de observação correspondentes a m = n = 1, são inversamente 
proporcionais às dimensões da abertura.

b) A fenda simples pode ser considerado como um caso particular da difracção por uma abertura 
rectangular, considerada antes. Suponhamos que a fenda, com uma largura a, é paralela ao eixo dos  y  e bastante 
longa, de modo a ter-se l»b . Neste caso, o factor yα2senc  na Eq. (9) decresce rapidamente para 0≠py , pelo que 
a luz difractada pela fenda se espalha predominantemente no plano xz. Considerando que 1senc2 →yα  quando 

0→py , a distribuição de irradiâmcia dada na Eq.  (9) reduz-se então à forma

2

2

0
sen

α
αII = 						           	  	     (11)

onde

θα sen
2
ka

= ka    ,	
0

sen
R
xp=θ 				          		      (12)

						            
sendo θ  o ângulo  medido relativamente ao plano yz.

PR 4.5. Uma fenda simples é iluminada por luz com comprimento de onda 650=l  nm e produz um padrão 
de difracção de Fraunhofer em que os mínimos de primeira ordem se situam numa direcção que faz um ângulo 

º5=θ  com a normal ao plano da fenda. Determine a largura da fenda.

Resolução
Das Eq.s (11) e (12) do problema PR 4.4, tem-se que os mínimos de intensidade no padrão de difracção 

ocorrem para

pθ
l
pα ma

== sen , 	m inteiro							            (1)

onde a é a largura da fenda. Considerando m = 1 e substituindo os valores indicados, tem-se

6
7

1045.7
)º5sen(

105.6
sen

-
-

×=
×

==
θ

la 10
7.45 x 10  m						            (2)
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PR 4.6. Demonstre o teorema matricial, dado pela Eq. (4.16).

Resolução
Considere-se um conjunto de N aberturas idênticas, sendo f(x) a função de transmissão de uma dessas 

aberturas situada na origem do plano. A função de transmissão de uma abertura centrada no ponto xn pode 
exprimir-se em termos da função de transmissão f(x) segundo a relação:

∫
+∞

∞-

--=- ')'()'()( dxxxxxfxxf nn δ
 +∞

dx 				          		        (1)

onde δ  representa a função delta de Dirac. O integral da Eq. (1) pode ser entendido como a convolução da função 
f(x) com a função δ(x ₋xn) . A função de transmissão correspondente ao conjunto de todas as aberturas é dada por:

∑
=

-=
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n
nxxfxg

1
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									              (2)
         

∫∑
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1

dxxxxxf n

N

n
δ

 +∞

dx   

O padrão de difracção de Fraunhofer, correspondente ao conjunto das aberturas, é dado pela transformada 
de Fourier de  g(x):

{ })()( xgFkG x =        						           	      (3)

Considerando a função g(x) dada pela Eq. (2) e utilizando o teorema da convolução, obtém-se:
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	 	          		        		       (4)

A duas dimensões, este resultado assume a forma:
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onde

∑
=
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N

n
nn yyxxfyxg

1
),(),( 					           		       (6)

PR 4.7 
a)  Obtenha a dispersão angular do espectro de primeira ordem para a luz branca que incide normalmente 

numa rede de transmissão que apresenta 1000 estrias por centímetro. 
b) Calcule a dispersão angular para uma pequena banda de comprimentos de onda, dada por 

l
θ

∆
∆

=D , 
para a primeira ordem de dispersão pela mesma rede, funcionando no visível.
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Resolução
a) Considerando a Eq. (4.20), tem-se que os máximos principais na distribuição da intensidade ocorrem quando 

N
sen

senN
=

β
β 								              (1)

onde

θβ sen
2

kd
=

kd
								             (2)

A condição (1) verifica-se quando ,2,,0 ppβ ±±= ...ou seja, quando

lθ md m =sen .							                 	      (3)

No caso do problema, considera-se m = 1 e

5
2

101
1000
10 -

-

×==d
10

10  m							            (4)

A luz branca estende-se numa banda de comprimentos de onda compreendida entre =1l 390 nm e =2l 780 nm, 
pelo que se tem:

039.0
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10390ens 5

9

1 =
×

×
= -

-

θsen 10
10 							             (5)

078.0
101

10780sen 5

9

2 =
×

×
= -

-

θ 10
10

							             (6)

Ou seja, tem-se =1θ  2º 14’,  =2θ  4º 28’ e 

=-=∆ 12 θθθ 2º 14’.							             (7)

b) Neste caso, diferenciando a Eq. (3), obtém-se

md
mD

θl
θ

cos
=

∆
∆

= 								              (8)

Considerando 500≈l nm, tem-se d » λ, pelo que a Eq. (3) permite concluir que 1cos ≈mθ  para m = 1. 
Deste modo, a dispersão angular é  D ≈ 1×105 rad/m.

PR 4.8. O padrão de difracção de Fraunhofer de uma fenda dupla iluminada com luz de comprimento de onda   
λ = 500 nm, aparece no plano focal posterior de uma lente com uma distância focal  f = 120 cm. O espaçamento 
entre franjas brilhantes consecutivas é 1 mm e o terceiro máximo está ausente. Determine a largura de cada fenda 
e a distância entre elas. Faça uma representação gráfica da distribuição de intensidade.

Resolução
O espaçamento entre franjas na experiência de Young é dado por ∆y = Dλ / d , tendo-se que, neste caso, 

D = f = 120 cm. Assim, o espaçamento entre as fendas é:



120

6.0
101

)10500)(10120(
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Dd l 10 )( 10

10
 mm					          (1)

Os máximos de interferência ocorrem quando:

lθ mdsen =dsen ,   m inteiro							            (2)

Por outro lado, os mínimos no padrão de difracção, produzido por uma fenda simples, ocorrem quando 

lθ na =sen ,   n inteiro							            (3)

Quando ambas as condições são satisfeitas em simultâneo, nenhuma luz atinge o plano de observação, não 
se observando então as franjas de interferência que seriam esperadas nessas posições. Tem-se então:

M
n
m

a
d

== 								             (4)

No caso em consideração, m = 3 e n = 1, pelo que M = m/n = 3. Assim, a largura da fenda é 

2.0
3

==
da  mm.								             (5)

Figura 4.12 - Distribuição da intensidade na difracção por duas fendas iguais, para o caso d = 3a.

A Fig. 4.12 ilustra a distribuição da intensidade correspondente à difracção pelas duas fendas quando d = 3a. 
Neste caso, verifica-se que as franjas de interferência de ordem m = 3, 6, 9, … estão ausentes.

PR 4.9. Determine o raio do disco central, formado na retina do olho, na imagem de um objecto pontual distante. 
Considere que a pupila do olho tem um raio a = 1 mm, que a sua distância à retina é de d = 2 cm e que a luz tem 
um comprimento de onda 600=l nm.

Resolução
A pupila do olho funciona como uma abertura circular, formando-se um padrão de difracção de Airy na 

retina. A partir da Eq. (4.24) tem-se que o raio do disco central desse padrão é dado por:
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a
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≈

 (2 × 10−2)(6 × 10−7)
 2(1 × 10−3)

 7.32 × 10−6 m         				          (1)

PR 4.10. Considerando a geometria da Fig. 4.5, obtenha o resultado dado pela Eq. (4.25) para o campo no ponto 
de observação correspondente à zona de Fresnel de ordem j:

Resolução
Cada zona de Fresnel na Fig. 4.5 pode ser encarada como uma abertura iluminada do lado esquerdo por 

uma onda esférica proveniente do ponto  P1 , da forma:
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Rki
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= 					             		   	       (1)

Considere-se um anel elementar com raio  Rf senθ  e largura Rf dθ  dentro de uma dada zona de Fresnel. Usando 
o princípio de Huygens e introduzindo o factor de inclinação Q, o campo no ponto P0 devido a esse anel elementar é 
dado por
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=dE dS 			         	         		       (2)

onde dS é a área do anel elementar, dada por

θθp dRdS f sen2 2=dS 					            			        (3)

Considerando a geometria da Fig. 4.5 e aplicando a lei dos co-senos, tem-se:

θcos)(2)( 0
2

0
22 RRRRRRR ffff +-++= 		          			        (4)

Diferenciando esta expressão obtém-se:

θθdsenRRRRdR ff )(22 0+= 				          		       (5)

A Eq. (5) pode ser substituída na Eq. (3), obtendo-se:
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= pdS 					             		       (6)

Substituindo a Eq. (6) na Eq. (2), tem-se que campo no ponto P0 devido à zona de Fresnel de ordem j pode 
ser escrito na forma:
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onde 2/0 ljRR j +=  e 2/)1(01 l-+=- jRR j . Ao escrever a Eq. (7) considerou-se que o factor de obliquidade é 
aproximadamente constante sobre a zona de Fresnel em causa, ou seja, jQQ =)(ϕ . O cálculo do integral na Eq. (7) 
permite obter o resultado:
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PR 4.11. Ondas planas com comprimento de onda λ = 500 nm incidem perpendicularmente num ecrã opaco 
que possui uma abertura circular de raio a = 1.0 mm. Determine as distâncias axiais relativamente ao ecrã 
correspondentes aos dois pontos mais afastados com máximos de intensidade.

Resolução
O raio da n-ésima zona de Fresnel, rn , relaciona-se com a distância R0 entre a abertura e o ponto de observação 

na forma

0Rnrn l= 						            		       (1)

Fazendo  rn = a, tem-se que o ponto mais distante com intensidade máxima corresponde a n = 1, situação em que 
a abertura é completamente preenchida apenas por uma zona de Fresnel. A distância desse ponto ao ecrã é dada por

2
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×
== -

-

l
aR01

01
01

m							            (2)

O ponto seguinte com intensidade máxima corresponde a n = 3, situação em que a abertura é inteiramente 
preenchida por três zonas de Fresnel. A distância desse ponto ao ecrã é dada por:
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l
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10
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10 0.67 m							           (3)

PR 4.12. Considerando a geometria da Fig. 4.6 e assumindo a aproximação paraxial, obtenha o resultado dado na 
Eq. (4.36) para a relação entre o raio da zona de Fresnel de ordem n, rn , e as distâncias, Z e Zf 

.

Resolução
Considerando a geometria da Fig. 4.6, tem-se que o raio y de uma zona arbitrária é dado por:

22222 yZRZR ff =-=- 				          			         (1)

A partir da Eq. (1), e supondo que o ângulo θ na Fig. 4.6 é suficientemente pequeno, pode-se escrever:
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22
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+
=- 		             	   		                  		      (3)

Quando  y = rn , que corresponde ao raio da zona de Fresnel de ordem n, a diferença de percursos entre o 
raio que vai de P1  a  Q  e depois a  P0  e o raio que vai de  P1 a  P0  ao longo do eixo, é dada por:

2
)()( lnZZRR ff =+-+ 				          			        (4)

Substituindo as Eq.s ( 2) e (3) na Eq. (4) e fazendo  y = rn  obtém-se:

2
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nf r
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ZZ
l

=+ 						            		       (5)
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PR 4.13. Um feixe colimado de luz com comprimento de onda  λ  incide perpendicularmente numa placa zonada, 
verificando-se o aparecimento de um máximo de intensidade sobre o eixo, 1 m atrás da placa.  Determine o ponto 
onde será focada a luz com o mesmo comprimento de onda, no caso de ela divergir de um ponto situado 1.5 m à 
frente dessa placa.

Resolução
Da Eq. (4.36) tem-se:

fZZ f

111
=+ 								              (1)

onde

2
1

nr
n

f
l

= 									              (2)

No caso de o feixe incidente ser colimado, tem-se  Zf = ∞ , pelo que  Z = f = 1 m. Por outro lado, quando 
Zf = 1.5 m, tem-se:

1
11

5.1
1

=+
Z

									             (3)

Ou seja, a luz é focada a uma distância Z = 3 m da placa zonada.

PR 4.14. Uma placa zonada de Fresnel é constituída por cinco zonas. A primeira zona consiste num disco circular 
de raio  r1 . A segunda é um anel concêntrico e transparente situado entre r1 e r2 , seguindo-se um anel opaco entre 
r2 e r3 , outro anel transparente entre r3 e r4  e, finalmente, uma zona opaca entre r4  e o infinito. Os valores destes 
raios estão na razão das raízes quadradas dos respectivos índices. Quando a placa zonada é iluminada por ondas 
planas monocromáticas com comprimento de onda 500 nm, verifica-se a existência de uma mancha brilhante 
mais intensa no eixo da placa zonada 1 metro atrás dela.

a) Qual é o valor do raio r1?
b) Indique a intensidade dessa mancha em termos da intensidade da onda incidente.
c) Indique as posições dos máximos de intensidade ao longo do eixo.

Resolução
a) O raio da n-ésima zona, rn , relaciona-se com a distância  R0 entre a abertura e o ponto de observação na 

forma dada pela Eq. (4.33). A distância R0 para a qual de observa a mancha brilhante mis intensa corresponde à 
situação em que cada cada anel da placa zonada corresponde a uma única zona de Fresnel. Neste caso, o valor de 
r1 é dado pela Eq. (4.33) considerando R0 = 1 m ,  λ = 500 nm  e  n = 1 , obtendo-se

4
1 107 -×≈r 10 m								              (1)

b) Tendo em consideração a resposta na alínea anterior, tem-se que o campo no ponto de observação 
situado no eixo 1 m atrás da placa é

 	 131 2EEEE ≈+= . 							            (2)
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Por outro lado, o campo que existiria nesse mesmo ponto devido à onda incidente (não obstruída), seria

2/1EE ≈∞ 									             (3)

Ou seja, tem-se E ≈ 4E∞ . Como a intensidade é proporcional ao quadrado do módulo do campo, a 
intensidade da mancha relaciona-se com a intensidade da onda incidente, I∞ , na forma:

I ≈ 16I∞ .									              (4)

c) A distância R∞ = 1 m corresponde à distância focal de primeira ordem,  f1 . As posições dos outros 
máximos de intensidade ao longo do eixo correspondem às distâncias focais de ordem superior:

nn
ffn

11 == m,  	 n = 3, 5, 7...						           (5)

Nestes casos, cada um dos anéis da placa zonada contêm um número ímpar de zonas de Fresnel.	

PR 4.15. Partindo do integral de difracção dado pela Eq. (4.7) e tendo por base a geometria da Fig. 4.8, demonstre 
o resultado dado ela Eq (4.46) para a distribuição de intensidade devida à difracção de Fresnel por uma abertura 
rectangular.

Resolução

Considere-se a Fig. 4.8, onde se assume que uma abertura rectangular situada no plano (x, y) é iluminada 

por uma onda esférica )exp()/( 0 ffi RkiREE





⋅-= , originada numa fonte pontual situada em (xf  , yf , Zf ) . 

Considerando o factor de obliquidade como uma constante, pode-se calcular o campo no ponto de 

observação P0 com base na Eq. (4.7), que assume o aspecto:

∫∫ Σ

+⋅-

= dxdy
RR

eQEE
f

RRki

P

f )(

0




QE0 ∫ ∫ RR
			       	       			        (1)

A geometria da Fig. 4.8 permite escrever as seguintes expressões para as distâncias R e Rf 
:

222 )()( ZyyxxR pp +-+-= 	

    Z
yyxx

Z pp

2
)()( 22 -+-

+≈ 	         		      			      (2a)

222 )()( ffff ZyyxxR +-+-=  

      
f

ff
f Z

yyxx
Z

2
)()( 22 -+-

+≈     			       			      (2b)

No denominador da Eq. (1) pode-se aproximar R e Rf  
 por Z e Zf 

, respectivamente, dado que as amplitudes 
das ondas esféricas não variam significativamente sobre a área de integração. Contudo, no expoente dessa equação 
deve-se considerar as aproximações dadas pela Eq. (2).
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Introduzindo os parâmetros  xs  e  ys definidos nas Eq.s (4.43) e (4.44), respectivamente, pode-se reescrever 
a Eq. (1) na forma:

[ ]∫∫ Σ

-













-+--= dxdyyyxx
ZZ

Dik
ZZ
eQEE ss

ff

ikd

p
22

0 )()(
2

expQE ∫ ∫ ik
    	       		       (3)

onde D = Z + Zf 
 é a distância entre os planos da fonte pontual e do ponto de observação e

D
yyxx

Dd fpfp

2
)()( 22 -+-

+≈ 						           (4)

 é a distância entre a fonte e o ponto de observação.

Usando as novas variáveis u e v, dadas pelas Eq.s (4.41) e (4.42), pode-se escrever a Eq. (3) na forma

∫∫ ---=
2

1

2
2

1

2 2/2/0

2

v

v

vi
u

u

uiikd
P dveduee

D
iEE ppiE0 du dv 				         		       (5)

onde se usou a Eq. (4.8). Cada um dos integrais na Eq. (5) pode ser calculado com base nos chamados integrais de 

Fresnel, C(w)  e  S(w), dados pelas Eq.s (4.39) e (4.40). De facto, tem-se:

∫ -=-
w

si wiSwCdse
0

2/ )()(
2p ds iS 						            	      (6)

Os integrais de Fresnel foram calculados exaustivamente e os seus valores encontram-se devidamente tabelados. 
O uso dessas tabelas permite calcular facilmente o campo dado pela Eq. (5), o qual se pode apresentar na forma:

[ ] [ ] 2
1

2
1

)()()()(
2

v
v

u
ulP viSvCuiSuCEiE --= iS iS 			         		       (7)

Na Eq. (7), lE  representa o campo que existiria  no ponto de observação se não houvesse qualquer 
obstáculo, dado pela Eq. (4.45).

A intensidade no ponto de observação é dada então por:

[ ] [ ]{ }[ ] [ ]{ }2
12

2
12

2
12

2
12 )()()()()()()()(

4
vSvSvCvCuSuSuCuCII l

P -+--+-=  	      (8)

em que  Il  é a intensidade correspondente à onda não obstruída no ponto de observação. O resultado anterior 
pode apresentar-se na forma

2
12

2
12 )()(

4
vVuVII l

P



= V12 V12
				         			        (9)

onde

[ ] 2

1
)()(12

w
wwiSwCV -=



V12 iS 							          (10)

é o vector que une os pontos  w1  e  w2  na espiral de Cornu.
 

PR 4.16. Considere um ecrã opaco semi-infinito disposto verticalmente, de tal modo que o seu limite superior 
é horizontal. Esse ecrã é iluminado por um feixe colimado de luz que incide normalmente e que apresenta um 
comprimento de onda de  λ = 500 nm. Determine a intensidade num ponto situado 4 m atrás do ecrã e 2 mm 
abaixo do nível do seu bordo.
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Resolução
Dado que o feixe é colimado, as frentes de onda da luz incidente podem considerar-se planas. Neste caso, 

tem-se Zf = ∞ , pelo que  D = Zf  e:

Z
xxu s l

2)( -= 								             (1)

Introduzindo os dados do problema, tem-se:

2
)4)(10500(

21022)( 9
3

11 =
×

×=-= -
-

Z
xxu s l

10
10 )(

					          (2)

Recorrendo a uma tabela dos integrais de Fresnel, tira-se que C(2) = 0.4882 e S(2) = 0.3434. Deste modo, 
tendo por base a Eq. (4.48), a intensidade no ponto em causa é dada por

[ ] [ ]{ } l
l

P III 012.03434.05.04882.05.0
2

22 =-+-= 				         (3)

sendo Il  é a intensidade correspondente à onda não obstruída no ponto de observação.

4.5. Problemas propostos

PP 4.1. Um feixe de luz monocromática com comprimento de onda λ = 500 nm incide numa fenda simples, sendo 
o respectivo padrão de difracção observado num ecrã que se encontra à distância de 1 m da fenda. Sabendo que 
espaçamento entre o primeiro e o terceiro mínimos do padrão de difracção é de 4 mm, determine a largura da fenda.

PP 4.2. Um feixe de luz monocromática com comprimento de onda λ = 500 nm incide numa fenda estreita e longa, 
situada à frente de uma lente delgada convergente de distância focal  f = 80 cm. Sabendo que os primeiros mí-
nimos (adjacentes à mancha central) do padrão de difracção de Fraunhofer estão espaçados de 6 mm, calcule a 
largura da fenda.

PP 4.3. Mostre que, na difracção de Fraunhofer, os padrões de intensidade produzidos por dois ecrãs 
complementares, sendo que um deles é opaco e contém um fenda estreita de largura a, são idênticos, excepto 
perto do centro. Este problema ilustra um caso particular do Teorema de Babinet.

PP 4.4.  Tem-se uma abertura quadrada de lado 2L, centrada no ponto de coordenadas (a, b, 0) e cujos lados são 
paralelos aos eixos dos x e y. Essa abertura é iluminada por ondas planas monocromáticas, cuja direcção de propagação, 
situada no plano xz, faz um ângulo θ com o eixo dos z. Determine, na aproximação de Fraunhofer, a distribuição de 
intensidade no plano de observação. Compare o resultado obtido com o que se obtém no caso a = b = 0  e  θ = 0.

PP 4.5. a) Determine a distribuição de intensidade correspondente à difracção de Fraunhofer produzida por duas 
fendas paralelas, uma de largura a e outra de largura b, espaçadas de h. 

b) Use o resultado obtido em na alínea a) para descrever o padrão de difracção no caso a = b.
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PP 4.6. Duas fendas paralelas e iguais têm uma largura de 0.5 mm e os respectivos centros estão espaçados 2.5 
mm. Quais os máximos de interferência que estarão ausentes do padrão de difracção de Fraunhofer?

PP 4.7. Considere um feixe de luz monocromática com comprimento de onda λ que incide numa fenda simples 
de largura  a = 7λ . 

a) Escreva a expressão para a distribuição da intensidade numa região bastante afastada da fenda e faça 
a respectiva representação gráfica. Calcule as posições do primeiro mínimo e do primeiro máximo secundário.

b) Considere a fenda dividida em duas partes iguais, cada uma com largura a/2. Deseja-se alterar de 180º  a 
fase da luz que passa por uma dessas partes. Diga como poderá ser concretizado esse propósito.

c) Obtenha uma expressão que descreva a distribuição de intensidade para a situação da alínea b) numa 
região bastante afastada da fenda. Calcule as posições dos dois primeiros mínimos e do primeiro máximo neste caso.

PP 4.8. Calcule a separação angular entre as linhas D do sódio (λ = 589.592 nm e λ = 588.995 nm) no espectro de 
primeira ordem determinado por uma rede de transmissão com 5000 linhas por centímetro e para uma incidência 
normal.

PP 4.9. Um feixe colimado de luz monocromática, com comprimento de onda λ = 500 nm, incide numa lente 
convergente que apresenta um diâmetro de 1.5 cm e uma distância focal f = 60 cm. Obtenha o diâmetro angular 
do disco central no padrão de difracção formado no plano focal da lente.

PP 4.10. Considere um ecrã opaco contendo um orifício com 2 mm de diâmetro, que é iluminado normalmente 
por ondas planas com comprimento de onda  λ = 600 nm .  Indique as posições mais afastadas sobre o eixo do 
orifício em que será possível observar dois mínimos de intensidade. Justifique a existência desses mínimos.

PP 4.11. Um feixe colimado de luz de comprimento de onda  λ = 500 nm  incide num ecrã opaco que apresenta uma 
abertura circular com raio, r, ajustável. Um metro atrás e no eixo da abertura encontra-se um detector com uma 
área sensora bastante pequena. Verifica-se que a intensidade detectada oscila quando o raio da abertura aumenta 
desde 0 até ∞ .

a) Indique o raio da abertura para o qual se observa o primeiro máximo de irradiância.
b) Indique o valor desse raio correspondente ao primeiro mínimo.
c) Indique a razão entre as intensidades na situação a) e quando r = r∞ .
d) Suponha que o ecrã é substituído por um disco opaco de raio igual ao encontrado em a). Qual a 

intensidade detectada neste caso ?

PP 4.12. Um ecrã opaco apresenta uma abertura com a forma indicada na Fig. 4.13, tendo-se 
___
BD = 2 mm,___

BE = 2.41 mm e 
___
AE = 3.14 mm . Considerando a incidência normal nessa abertura de ondas planas de 

comprimento de onda 500 nm, determine a amplitude da luz num ponto do eixo a uma distância de 2 m do ecrã, 
em termos da amplitude que lá existiria se a onda inicial não fosse obstruída.

                                                                           

Figura 4.13 – Geometria de uma abertura
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PP 4.13. a) Mostre que a área de uma zona de Fresnel é dada por:

	 lp 0
0

R
RR

R
A

f

f

+
=

sendo Rf  o raio da frente de onda esférica primária e R0 a distância desde essa frente de onda até ao ponto de 
observação

b) Obtenha uma expressão para o número de zonas de Fresnel compreendidas numa abertura circular de 
raio a, centrada na linha que passa pela fonte pontual da onda primária e pelo ponto de observação. Mostre que 
essa expressão se pode apresentar com um aspecto semelhante ao da equação de uma lente convencional:

	
fRR f

111

0
=+

e obtenha uma expressão para f.

PP 4.14. Um feixe colimado de luz, com comprimento de onda λ = 550 nm, incide normalmente numa placa 
zonada de 3.0 cm de diâmetro. Verifica-se a formação de uma mancha brilhante mais intensa a uma distância 
de 1.00 m da placa zonada. Determine a que distância se forma a mancha brilhante mais próxima. Justifique a 
existência dessa mancha.

PP 4.15. Uma fonte pontual F, emitindo luz com comprimento de onda  λ = 600 nm, encontra-se a uma distância 
de 1.5 m de um ecrã plano e opaco, contendo uma fenda com 0.4 mm de largura. Usando a espiral de Cornu, 
calcule a intensidade num ponto P situado no lado oposto do ecrã e a 4.5 m dele. Suponha que a linha 

___
FP  é 

normal ao plano e passa pelo centro da fenda.

PP 4.16. Um ecrã plano de observação está situado a uma distância d = 
___
FP = 6 m  de uma fonte pontual F, 

que emite luz com comprimento de onda λ = 500 nm. O ponto P resulta da intersecção entre o ecrã e a normal 
que passa pela fonte. A meio caminho entre a fonte e o ecrã situa-se um outro ecrã opaco, paralelo ao anterior e     
semi-infinito, cuja fronteira superior é rectilínea, horizontal e tangente à linha 

___
FP . Determine a intensidade a) 

no ponto P e b) 2 mm acima e abaixo de P.
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Capítulo 5

FIBRAS ÓPTICAS

A primeira experiência de óptica guiada foi realizada por John Tyndall em 1870, quando demonstrou que 
a luz podia ser guiada no interior de um jacto de água, por sucessivas reflexões internas totais. Esse jacto de água 
funcionou assim como uma fibra óptica primordial. As primeiras fibras ópticas de vidro foram fabricadas já nos 
anos vinte do século passado, mas a sua utilização tornou-se mais habitual apenas nos anos cinquenta, quando as 
características de confinamento da luz foram significativamente melhoradas através da incorporação de uma bainha 
a envolver o núcleo. Desde essa altura e até aos anos setenta, as fibras ópticas foram utilizadas, principalmente, no 
âmbito da medicina, guiando a luz a distâncias curtas. O seu uso no domínio das telecomunicações não era então 
minimamente considerado, dada a elevada atenuação dessas fibras (~1000 dB/km). 

As limitações impostas pela atenuação das fibras ópticas começaram a ser ultrapassadas em 1970, quando 
se conseguiram fabricar fibras ópticas com uma atenuação de cerca de 20 dB/km. O progresso tecnológico 
permitiu chegar, em 1979, a uma atenuação de apenas 0.2 dB/km na região espectral de 1.55 mm. A existência de 
fibras com uma atenuação tão baixa esteve na origem de uma profunda revolução que se operou desde então no 
domínio das comunicações ópticas. As fibras ópticas são também muito utilizadas actualmente para implementar 
diversos dispositivos, nomeadamente acopladores, sensores, amplificadores, lasers, etc.. 

5.1. Fibras ópticas com índice em degrau

Na sua forma mais simples, a fibra óptica apresenta um núcleo com índice de refracção uniforme, rodeado 
por uma bainha cujo índice de refracção é igualmente uniforme e inferior ao do núcleo. Devido à variação abrupta 
do índice de refracção na interface entre o núcleo e a bainha, estas fibras são chamadas fibras com índice em 

degrau. A Fig. 5.1 mostra esquematicamente o perfil do índice de refracção para este tipo de fibras. 

É útil considerar algumas propriedades das fibras ópticas com base no conceito de raio luminoso da óptica 
geométrica. Deve notar-se, contudo, que esta descrição é válida apenas quando o raio do núcleo, a, é bastante 
superior ao comprimento de onda da luz, λ, o que corresponde às chamadas fibras multimodo. Quando as duas 
grandezas são comparáveis, como sucede nas chamadas fibras monomodo, torna-se necessário usar a teoria 
electromagnética para descrever adequadamente a propagação da luz ao longo da fibra.
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Figura 5.1 - Representação esquemática da secção e do perfil do índice de refracção para fibras com índice em degrau.

5.1.1. Abertura numérica

Considerando a geometria associada ao raio (1) da Fig. 5.2, tem-se que a refracção do raio que entra no 
núcleo da fibra é traduzida pela equação:

ti nn θθ sensen 10 = 							          	   (5.1)

Figura 5.2 - Propagação de um raio guiado no núcleo de uma fibra com índice em degrau.

onde n1 e n0 são os índices de refracção do núcleo da fibra e do ar, respectivamente. O raio transmitido no núcleo 
sofre uma reflexão total na interface núcleo/bainha se o ângulo de incidência nesta interface for superior ao 
ângulo crítico para reflexão total, dado por:
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1

2sen
n
n

c =φ 		 				            	                        	   (5.2)

onde n2 é o índice de refracção da bainha. Todos os raios com φ > φc permanecem confinados ao núcleo, 
correspondendo aos chamados modos guiados da fibra.

Pode-se usar as Eq.s (5.1) e (5.2) para determinar o ângulo de incidência máximo para um raio à entrada 
da fibra, de modo a que ele seja posteriormente guiado pelo núcleo. Introduzindo θt = π / 2 − φc  na Eq. (5.1) e 
usando a Eq. (5.2), tem-se:

n0senθi,max = n1cosφc 	
 	                      

( ) 2/12
2

2
1 nn -=

		      	     			       	   (5.3)

O cone de aceitação limitado correspondente aos raios incidentes que são posteriormente guiados pela 
fibra é habitualmente expresso em termos da chamada abertura numérica (AN) da fibra, dada por: 

( ) 2/12
2

2
1 nnAN -= AN 				       				      (5.4)

Para uma fibra óptica típica, em que n1 = 1.48 e n2 = 1.46, tem-se uma abertura numérica AN = 0.242 e um 
ângulo máximo de aceitação θi, max 

≈ 14º  quando  n0 = 1.

Para n1 ≈  n2 , a abertura numérica pode ser aproximada por: 

2/1
1 )2( ∆= nAN AN ,      						        	   (5.5)

onde

1

21

n
nn -

=∆                                                		       	               			     (5.6)

A abertura numérica e, portanto, a capacidade de aceitação da luz pela fibra, aumenta quando D aumenta. 
Contudo, como se verá a seguir, o aumento de D determina também um aumento da chamada dispersão intermodal, 
o que é indesejável na perspectiva dos sistemas de comunicação.

5.1.2. Dispersão intermodal

A dispersão intermodal pode ser entendida com base na Fig. 5.2. É evidente que raios distintos per-           
correm distâncias diferentes. Em consequência, estes raios chegam em instantes diferentes ao fim da fibra, ainda 
que tenham partido ao mesmo tempo e viajado com a mesma velocidade. O percurso mais curto ocorre para
θi = 0, enquanto que o percurso mais longo ocorre para o ângulo θi = θi,max , dado pela Eq. (5.3). O atraso temporal  
∆T entre os dois raios que percorrem os caminhos mais curto e mais longo é uma medida do alargamento 
experimentado por um impulso lançado à entrada da fibra.
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Num sistema de comunicação por fibra óptica, o atraso temporal  ∆T deve ser menor que o tempo de bit  
TB = 1/B, sendo B o ritmo de transmissão. Deste modo, mostra-se no problema PR 5.2 que o produto do ritmo de 
transmissão pela distância, que caracteriza um sistema de comunicação, deve satisfazer a condição:

∆
<

c
n
nBL 2

1

2BL 								           	   (5.7)

A título de exemplo, tem-se BL < 20 (Mb/s)-km para ∆ = 0.01 e n1 = 1.5 (≈ n2). Estas fibras podem servir 
para comunicar a uma taxa de 2 Mb/s ao longo de uma distância de 10 km. A Eq. (5.7) mostra claramente a 
conveniência de se usar fibras ópticas com  abertura numérica reduzida, de modo a que o produto do ritmo de 
transmissão pela distância atinja valores suficientemente elevados.

Os efeitos da dispersão intermodal podem ser significativamente reduzidos usando fibras com índice 
gradual, discutidas a seguir, ou mesmo completamente eliminados, usando fibras monomodo

5.2. Fibras ópticas com índice gradual

Para além das fibras com índice em degrau, existe um outro tipo de fibras que se caracteriza pelo facto de o 
seu índice de refracção no núcleo não ser constante, mas decrescer gradualmente desde um valor máximo no eixo 
até um valor mínimo na fronteira com a bainha. Estas fibras são chamadas fibras com índice gradual. A Fig. 5.3 
mostra esquematicamente o perfil do índice de refracção para este tipo de fibras.

Figura 5.3 - Representação esquemática do perfil do índice de refracção para fibras com índice gradual.

As fibras com índice gradual apresentam um índice de refracção que pode, geralmente, ser descrito na forma:
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onde a é o raio do núcleo, D é dado pela Eq. (5.6) e α é uma constante. O caso α = 2 corresponde a um índice de 
refracção com perfil parabólico. Uma fibra com índice em degrau corresponde ao limite  α → ∞.
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Figura 5.4 - Trajectórias de raios guiados em fibras com índice gradual.

Mostra-se no problema PR 5.4 que um raio meridional se propaga numa fibra com índice gradual com perfil 
parabólico segundo uma trajectória sinusoidal. Na Fig. 5.4 representa-se a evolução de três raios meridionais 
guiados, correspondentes a três valores distintos do ângulo inicial com o eixo. Com base nesta figura, torna- 
-se fácil entender, em termos qualitativos, a redução da dispersão intermodal que se obtém usando uma fibra 
com índice gradual. Como acontece com as fibras com índice em degrau, o percurso mais longo corresponde aos 
raios mais oblíquos. Contudo, no caso das fibras com índice gradual, a velocidade do raio varia ao longo do seu 
caminho, devido à variação do índice de refracção. O raio que se propaga ao longo do eixo da fibra tem um trajecto 
mais curto, mas, em contrapartida, viaja com uma velocidade inferior. Os raios mais oblíquos têm uma parte 
significativa do seu trajecto em zonas com um índice de refracção mais baixo, onde a sua velocidade é superior. 
Em consequência, consegue-se uma redução significativa da dispersão intermodal usando fibras com um índice 
de refracção gradual, desde que o perfil do índice de refracção seja escolhido de modo conveniente.

5.3. Modos guiados

A transformada de Fourier do campo eléctrico é dada por
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e satisfaz a seguinte equação, obtida da equação de onda (1.15): 
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onde ck /0 ω=  é o número de onda no vazio.
	
Dada a simetria cilíndrica da fibra óptica, torna-se conveniente reescrever a Eq. (5.10) usando as coor-

denadas cilíndricas r, φ e z:
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onde n = n1  para  r ≤ a  e  n = n2 para  r > a. Pode-se escrever uma equação semelhante à anterior para a 
transformada de Fourier do campo magnético ωH



. Como os campos E


 e H


 satisfazem as equações de Maxwell 
(1.7)-(1.10), tem-se que das seis componentes apenas duas são independentes. Considera-se habitualmente zEω  e 

zHω  como as duas componentes independentes. Assumindo que zEω  se pode escrever na forma

)()()(),,( zZrFzrE z φφω Φ= 		  		  		  (5.12)

e substituindo na equação (5.11), obtém-se as soluções Z(z) = exp(iβz)  e Φ(φ) = exp(imφ), onde β é a constante 
de propagação e m é um número inteiro.  Por outro lado,  F(r)  satisfaz a seguinte equação diferencial: 
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As soluções da Eq. (5.13) são dadas em termos de funções de Bessel e podem ser apresentadas na forma:
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onde A, A', C e C '  são constantes, Jm  e  Ym  são funções ordinárias de Bessel de ordem m de primeira e de segunda 
classe, respectivamente, enquanto  Im  e  Km  são funções modificadas de Bessel de ordem m de primeira e de 
segunda classe, respectivamente. Os parâmetros  p e q são dados por:
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e satisfazem a relação: 
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Dado que Ym (pr)  apresenta uma singularidade para r = 0, deve admitir-se que A' = 0 para que a solução 
tenha significado físico. Por outro lado, a solução F(r) deve decair na bainha para valores crescentes r, pelo que 
deve ter-se C ' = 0. Como consequência, a solução geral dada pela Eq. (5.12) fica reduzida à forma:
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De modo semelhante, a solução para Hωz  pode ser escrita na forma: 
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As equações de Maxwell podem ser usadas para encontrar as expressões das componentes transversais 
dos campos eléctrico e magnético em termos de derivadas das componentes longitudinais. Em coordenadas 
cilíndricas, tem-se: 
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Estas expressões são igualmente válidas na região da bainha se  p2  for substituído por  −q2.

Impondo a continuidade das componentes tangenciais dos campos na fronteira núcleo/bainha (r = a), 
obtém-se quatro equações. Tem-se uma solução não-trivial para as constantes A, B, C, e D se o determinante da 
matriz dos coeficientes for nulo, o que conduz à seguinte equação a valores próprios: 
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onde as linhas indicam a derivada em ordem ao argumento da função. 

As soluções da Eq. (5.24) dão as constantes de propagação β para os diferentes modos da fibra. Para 
cada valor de m existem várias soluções βmn (n = 1,2,...). Cada valor βmn corresponde a um modo de propagação 
específico, cujas componentes dos campos eléctrico e magnético são dadas pelas Eq.s (5.18)-(5.23). Para m = 0  os 
modos da fibra são designados por TE0n e TM0n , consoante correspondam a modos de propagação com campo 
eléctrico transverso (Ez = 0) ou com campo magnético transverso (Hz = 0). Para m > 0 os modos da fibra são 
híbridos, dado que as seis componentes do campo electromagnético são não-nulas. Estes modos híbridos são 
designados por HEmn  ou  EHmn , dependendo da grandeza relativa das componentes Hωz  e Eωz . Por exemplo, se 
Eωz  apresenta uma grandeza maior, o modo é designado por HE.

No caso em que n1 ≈ n2 , a equação a valores próprios (5.24) pode ser simplificada e apresentar-se na forma:
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A Eq. (5.25) com o sinal mais no membro direito é a equação a valores próprios para os modos EHmn , enquanto 
com o sinal menos é a equação para os modos HEmn . O caso em que o membro direito é nulo corresponde aos 
modos TE  e TM.

Cada modo da fibra tem um índice de refracção efectivo neff = β / k0 , tal que n1> neff  > n2 
. A situação              

neff  = n2  corresponde à chamada condição de corte, em que se tem q = 0. Torna-se útil introduzir a frequência 
normalizada V, dada por

( ) 2/122
10 cnnakV -=     2n2

								      
(5.26)

Este parâmetro conjuga os parâmetros estruturais da fibra e o comprimento de onda da luz guiada, 
determinando o número de modos suportados pela fibra. Para uma fibra multimodo com um valor elevado de V, 
esse número é dado aproximadamente por V2 /2.
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5.4. Fibras ópticas monomodo

A condição para que uma fibra óptica suporte apenas um modo é dada pelo valor de V para o qual os modos 
TE01 e TM01 atingem o corte. Das equações a valores próprios (5.24) ou (5.25) pode verificar-se que a condição de 
corte para ambos os modos é dada por  J0 (V) = 0. O menor valor de V para o qual esta condição é satisfeita é 2.405. 
Ou seja, para valores V < 2.405 a fibra suporta apenas o modo HE11 , que é conhecido como modo fundamental. 

Na aproximação de guiagem fraca, as componentes axiais E z  e H z  do modo fundamental são desprezáveis 
e a sua polarização é aproximadamente linear. Assumindo uma polarização linear ao longo do eixo dos x, o campo 
eléctrico do modo HE11  é dado por
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A mesma fibra suporta um outro modo polarizado linearmente segundo o eixo dos y. Na situação ideal, em 
que a geometria é perfeitamente cilíndrica e o material é isotrópico, verifica-se uma degenerescência entre esses 
dois modos polarizados ortogonalmente. Na prática, contudo, um pequeno desvio da geometria cilíndrica da fibra 
ou uma ligeira anisotropia do material determinam uma quebra dessa degenerescência. Neste caso, a constante 
de propagação β torna-se ligeiramente diferente para os modos polarizados nas duas direcções ortogonais. O grau 
de birrefringência modal, δ, é definido na forma:
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onde nx (ny) é o índice de refracção para o modo polarizado segundo o eixo dos x (eixo dos y). 

Devido às flutuações na geometria da fibra e na anisotropia do material, a birrefringência δ não se mantém 
constante ao longo da fibra. Em consequência, a luz que é lançada na fibra com polarização linear adquire 
geralmente uma polarização arbitrária ao propagar-se ao longo dessa fibra.

Através de um projecto apropriado da fibra, é possível introduzir intencionalmente uma birrefringência 
significativa, de modo a tornar possível a propagação de luz com um estado de polarização constante. As fibras 
assim obtidas são designadas por fibras com manutenção da polarização.

5.5. Atenuação

Actualmente, as fibras ópticas apresentam uma atenuação que, embora sendo muito baixa, não pode ser 
ignorada nos sistemas de comunicação a longa distância. Se representarmos por P0  a potência lançada na entrada 
de uma fibra com comprimento L, a potência à saída é dada por:

	 )exp(0 LPPt α-=                                    	                                      	                 (5.29)

onde α é a constante de atenuação. É costume indicar a atenuação da fibra em unidades de dB/km, usando a relação:



137

αα 343.4log10

0
=








-=

P
P

L
t

dBαdB 
10                                   			                                    (5.30)

Um vidro de sílica ordinário apresenta, em geral, uma atenuação bastante superior a 100 dB/km, a qual é 
devida à absorção por diversas impurezas, nomeadamente iões metálicos (ferro, crómio e cobre). Contudo, um 
vidro de sílica pura caracteriza-se por uma atenuação bastante baixa, inferior a 1 dB/km, para comprimentos de 
onda entre 0.8 e 1.8 μm. Fora deste intervalo a atenuação aumenta rapidamente.

Na Fig. 5.5 mostra-se uma curva típica para a atenuação de um vidro de sílica de elevada qualidade em 
função do comprimento de onda. A atenuação apresenta valores mínimos perto de 1.3 e 1.55 μm, atingindo neste 
último caso um valor de 0.2 dB/km. As bandas próximas desses comprimentos de onda constituem as janelas que 
têm sido usadas nos sistemas de comunicação por fibras ópticas. 

Figura 5.5 - Perfil típico da atenuação em função do comprimento de onda num vidro de sílica de elevada qualidade.

A absorção pelo material e a dispersão de Rayleigh constituem as contribuições dominantes para a atenuação 
residual da sílica fundida.  A sílica pura absorve na região do ultravioleta, assim como na região do infravermelho 
além dos 2 μm. Contudo, mesmo uma quantidade relativamente pequena de impurezas pode determinar uma 
absorção significativa na região 0.5 - 2 μm. A impureza mais importante que afecta a atenuação nesta região tem que 
ver com a água dissolvida no vidro, mais concretamente com o ião hidroxilo (OH - ), cujo pico de absorção principal 
se situa perto de 2.73 μm. O pico na Fig. 5.5 perto de 1.37 μm corresponde ao segundo harmónico desse valor.

A dispersão de Rayleigh é um efeito de carácter fundamental, resultante das flutuações aleatórias da 
densidade do material da fibra. Daí resultam flutuações locais do índice de refracção, que provocam a dispersão 
da luz em todas as direcções. Este efeito varia com λ−4, de modo que se torna mais significativo para baixos 
comprimentos de onda. A atenuação mínima da fibra perto de 1.55 μm é dominada pela dispersão de Rayleigh. 

A atenuação de uma fibra óptica pode ficar a dever-se também às imperfeições geométricas introduzidas 
durante o seu processo de fabricação, assim como ao seu excessivo encurvamento, que impossibilita a guiagem 
completa da luz através de sucessivas reflexões totais internas.

Uma fibra óptica ordinária pode ser obtida aquecendo o centro de uma vara de vidro e puxando as suas 
extremidades. Contudo, uma fibra óptica de qualidade, constituída por um núcleo e uma bainha e apresentando 
um diâmetro constante, requer uma técnica de fabricação mais sofisticada. Existe para o efeito dois métodos: 
estiramento a partir de uma vara pré-formada, a qual se apresenta já constituída por um núcleo e uma bainha, 
ou estiramento a partir de um cadinho duplo e concêntrico, no qual as duas partes são fundidas separadamente. 
Deve notar-se que a temperatura à qual a sílica pura apresenta uma viscosidade conveniente para esse efeito 
(cerca de 2000º C) é bastante superior à do vidro ordinário (cerca de 1000º C). Depois de concluído aquele processo 
de estiramento, é acrescentado um revestimento adicional de plástico para proteger a fibra.

A obtenção de um gradiente do índice de refracção devidamente controlado pode ser conseguido a partir 
de uma pré-forma que já apresente um índice de refracção gradual. Esta graduação do índice de refracção da 
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pré-forma é habitualmente realizada por difusão de vários dopantes, tais como GeO2 e P2O5 , no vidro de sílica. 
Numa situação típica, a adição de 10% de algum destes dopantes é suficiente para aumentar o índice de refracção 
do vidro de 1.46 para 1.47.

5.6. Dispersão cromática

A dispersão cromática tem origem na interacção da onda electromagnética com os electrões ligados de um 
dieléctrico e manifesta-se através da dependência relativamente à frequência do índice de refracção n(ω), que se 
relaciona com a constante de propagação β(ω) na forma:

ω
ωβω )()( cn = 						                       	 (5.31)

Geralmente, esta relação de dispersão não é conhecida de modo explícito. Contudo, a constante de 
propagação β pode ser expandida numa série de Taylor em torno do valor central β0 :
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Na Eq. (5.33),  ng = n + ω(dn/dω)  e  vg  representam o índice de refracção de grupo e a velocidade de grupo, 
respectivamente. O parâmetro β2 corresponde à dispersão da velocidade de grupo (DVG), a qual é muitas vezes 
caracterizada pelo parâmetro D, dado por:

22
2 β
l
pcD -=                                                                            			     	 (5.35)

O parâmetro D  tem unidades de [ps/(nm.km)]. 

Verifica-se que D se anula para um dado valor do comprimento de onda  λ = λD , tendo-se geralmente                  
λD  ≈ 1.3 μm . Contudo, a DVG depende não apenas das características do material, mas também das características 
geométricas da fibra óptica. Deste modo, o projecto apropriado de uma fibra óptica permite desviar o comprimento 
de onda correspondente ao zero da DVG, ajustando-o ao comprimento de onda para o mínimo de atenuação,        
λD  ≈ 1.55 μm, obtendo-se assim a chamada fibra com dispersão desviada. É possível igualmente obter uma fibra 
com uma DVG muito baixa e quase uniforme numa banda de comprimentos de onda. A dispersão para ambos os 
tipos de fibra encontra-se ilustrada na Fig. 5.6, juntamente com o caso de uma fibra standard.
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Figura 5.6 – Dispersão em função do comprimento de onda para três tipos de fibra.

No regime de dispersão normal, em que D<0, as componentes de um impulso correspondentes às 
frequências mais elevadas viajam mais lentamente que as componentes com frequências inferiores. No regime de 

dispersão anómala, onde D>0, acontece o oposto. As fibras ópticas convencionais exibem uma dispersão anómala 
para comprimentos de onda superiores a λD . Este regime de dispersão apresenta um interesse especial, dado 
que nele se torna possível a formação de impulsos ópticos com características especiais - os chamados solitões 
brilhantes - com base num balanço entre os efeitos dispersivo e não-linear.

Considere-se o caso de um impulso Gaussiano lançado na entrada da fibra, dado por: 
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onde E0 é pico da amplitude, ω0 é a frequência da portadora e t0 representa a meia largura no ponto 1/e da 
intensidade. Ela está relacionada com a largura total a meia altura, tFWHM , do modo tFWHM = 2(ln2)

1/2t0 ≈ 1.665t0. 
Mostra-se no problema PR 5.8 que a largura do impulso, pt , aumenta com a distância de propagação na forma:
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A Eq. (5.37) mostra que o alargamento do impulso depende da DVG, β2 , da largura inicial, t0, e da distância 
de propagação, z.

Mostra-se no problema PR 5.9 que a dispersão cromática impõe ao impulso um trinado, cujas características 
dependem do regime de dispersão. No regime de dispersão normal a frequência instantânea do impulso numa 
dada posição z aumenta com o tempo. Como consequência, o espectro na parte da frente do impulso é desviado 
para o vermelho, enquanto na parte de trás é desviado para o azul. Por outro lado, no regime de dispersão anómala, 
a frequência instantânea decresce com o tempo, Neste caso, o espectro na parte da frente do impulso é desviado 
para o azul, enquanto na parte de trás é desviado para o vermelho. A Fig. 5.7 ilustra o trinado do impulso para os 
dois regimes de dispersão. 
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(a)

(b)

Figura 5.7 – Representação esquemática do trinado imposto ao impulso nos regimes de dispersão (a) normal e (b) anómala. 

5.7. Fibras ópticas microestruturadas

As fibras ópticas microestruturadas (FOMs), também designadas por fibras de cristal fotónico, têm 
sido desenvolvidas desde 1996 e representam uma nova classe de fibras, sendo caracterizadas pelo facto de 
apresentarem uma bainha com múltiplos micro-canais de ar, paralelos ao núcleo. Estas fibras podem dividir-se 
em duas categorias, consoante apresentem um núcleo sólido ou um núcleo oco.

As fibras microestruturadas com núcleo oco conduzem a luz devido à existência de bandas espectrais proi-
bidas na bainha, determinadas pela periodicidade da rede de micro-canais que as constitui. Quanto às fibras 
microestruturadas com núcleo sólido, a propagação da luz pode basear-se igualmente na existência de bandas proibi-
das na bainha ou, simplesmente, por efeito da reflexão total interna, de modo análogo às fibras convencionais. Esta 
situação é possível desde que o índice de refracção médio da bainha seja inferior ao índice de refracção do núcleo. 

A Fig. 5.8 ilustra uma FOM com núcleo sólido, exibindo uma rede hexagonal de micro-canais na bainha. 
Uma MOF é caracterizda através de dois parâmetros estruturais: o diâmetro dos micro-canais, d, e o espaçamento 
entre eles, Λ.

Figura 5.8  – Representação esquemática de uma fibra óptica microestruturada com núcleo sólido, apresentando uma rede 

hexagonal de micro-canais de ar na bainha. 
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O controlo dos parâmetros estruturais da bainha permite alterar significativamente as características de 
dispersão de uma FOM. A Fig. 5.9 mostra as curvas de dispersão para uma FOM de sílica com uma rede hexagonal 
de micro-canais espaçados de i) 1μm e ii) 2.5μm, para valores diferentes dos diâmetros desses canais,. No caso 
ii), as curvas de dispersão têm apenas um zero de dispersão e apresentam um perfil aproximadamente uniforme 
acima desse zero. Já para o caso i), as curvas de dispersão têm dois zeros de dispersão, apresentando uma janela 
com dispersão anómala entre eles. Essa janela torna-se maior à medida que a razão (d/Λ) entre o diâmetro dos 
micro-canais e o espaçamento entre eles aumenta.

Figura 5.9 - Curvas de dispersão para uma FOM com uma rede hexagonal de micro-canais espaçados de i) 1μm e ii) 2.5μm, 

para λ = 1.5μm, para diferentes diâmetros desses canais

Aumentando a razão (d/Λ) numa FOM com núcleo sólido diminui o índice de refracção médio da bainha, 
ou seja, aumenta a diferença entre os índices de refracção do núcleo e da bainha. Na situação limite, teremos o 
núcleo rodeado praticamente por ar, o que proporciona um maior confinamento do campo óptico guiado pela 
fibra. A intensidade do campo guiado é máxima neste caso, o que pode favorecer o desenvolvimento de diversos 
efeitos não-lineares, nomeadamente para valores reduzidos do diâmetro do núcleo. 

5.8. Acopladores de fibra óptica

Com a utilização crescente das fibras ópticas, sobretudo nos domínios das comunicações e dos sensores, 
verifica-se a conveniência de usar vários componentes também de fibra óptica capazes de executar as mais variadas 
funções: modulação, divisão do feixe, amplificação, controle da polarização, filtragem, etc.. Entre os componentes 
mais importantes encontra-se o acoplador direccional de fibra óptica, representado na Fig. 5.10.

Figura 5.10- Representação esquemática de um acoplador de fibra óptica.
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O funcionamento do acoplador direccional de fibra óptica baseia-se no facto de o campo do modo 
guiado se estender para além da interface núcleo-bainha. Assim, quando os núcleos de duas fibras se dispõem 
paralelamente e se encontram suficientemente próximos um do outro, de modo a proporcionar a sobreposição 
dos seus campos modais, verifica-se a transferência periódica de potência entre as duas fibras. Essa transferência 
é incompleta na situação mais geral em que as constantes de propagação dos modos das fibras individuais são 
diferentes. Contudo, pode-se conseguir a transferência completa de potência entre as duas fibras quando as suas 
constantes de propagação são iguais. Neste caso, designando por P1(0) a potência na fibra 1 no início da região 
de acoplamento (z = 0), tem-se que as potências nas duas fibras  numa posição z > 0 dessa região são dadas por:

)(cos)0()( 2
11 zPzP m= 					       	         	 (5.38)

)(sen)0()( 2
12 zPzP m= 						        	 (5.39)

Nas equações anteriores μ representa o chamado coeficiente de acoplamento, sendo uma medida da grandeza 
da interacção entre as duas fibras. O coeficiente de acoplamento depende dos parâmetros das fibras, da separação 
entre os seus núcleos e do comprimento de onda da luz propagada. 

A variação da constante de acoplamento com o comprimento de onda está na base de uma outra aplicação 
bastante importante dos acopladores direccionais, no âmbito da multiplexagem/desmultiplexagem por divisão de 
comprimentos de onda (ver o problema PR 5.11).

5.9. Sensores de fibra óptica

As fibras ópticas podem ser úteis também como sensores para a medição de várias grandezas físicas e 
químicas: pressão, temperatura, campos eléctrico e magnético, corrente, rotação, aceleração, deslocamento, 
concentração química, pH, etc.. Os sensores de fibra óptica apresentam algumas características que os tornam 
particularmente atractivos: são imunes às interferências electromagnéticas, apresentam uma grande versatilidade, 
podem proporcionar uma medição distribuída espacialmente, apresentam um tempo de resposta bastante curto, 
a informação de vários sensores pode ser combinada e transmitida a longas distâncias através das próprias fibras 
ópticas, etc..

Numa situação típica, a luz lançada numa fibra óptica é guiada até à região pretendida. Aí, alguma das 
propriedades da luz (intensidade, fase, estado de polarização ou frequência) é modulada pela grandeza que se 
pretende medir, após o que a luz modulada é enviada pela mesma ou por outra fibra para detecção e processamento 
da informação. Quando a modulação é realizada sobre a luz que se propaga na fibra, tem-se um sensor de fibra 
intrínseco. No caso de essa modulação ser realizada quando a luz viaja entre duas fibras, tem-se um sensor de 
fibra extrínseco. Em geral, o uso de fibras monomodo permite que o sensor apresente uma sensibilidade bastante 
superior à proporcionada pelas fibras multimodo.

Na Fig. 5.11 mostra-se a representação esquemática de um microfone óptico, que constitui um exemplo de 
um sensor de fibra extrínseco. A membrana do microfone é posta a vibrar por uma onda sonora. No lado oposto, 
essa membrana é iluminada por luz laser proveniente de uma fibra óptica. Uma outra fibra recebe a luz reflectida. 
Devido à vibração da membrana, a direcção da luz reflectida varia, determinando assim uma modulação da 



143

intensidade recebida pela segunda fibra. Na prática, as dimensões deste sensor podem ser bastante reduzidas, 
permitindo a sua utilização em situações muito variadas.

Figura 5.11 - Representação esquemática de um microfone óptico.

O sensor interferométrico de Mach-Zehnder, representado na Fig. 5.12,  é um exemplo de um sensor de fibra 
intrínseco, que apresenta uma sensibilidade particularmente elevada. A luz proveniente de um laser passa por um 
acoplador direccional (AD) que funciona como um divisor de feixe 50:50. Os dois feixes daí resultantes são guiados 
por duas fibras monomodo, que constituem os dois braços do interferómetro de Mach-Zehnder. Essas duas fibras 
ligam-se às entradas de um segundo acoplador, idêntico ao anterior, o qual permite a sobreposição dos dois feixes 
e a posterior detecção e processamento do campo resultante. Um dos braços do interferómetro é constituído pela 
fibra sensível à grandeza que se quer medir, enquanto que o outro braço é constituído por uma fibra que se procura 
manter imune às perturbações externas. Quando a grandeza a medir actua na fibra sensível, a fase da luz que nela se 
propaga é alterada. Dado que a fase na outra fibra não é afectada, tem-se que a diferença de fase entre os dois feixes 
aquando da sua sobreposição no segundo acoplador, vai determinar em geral diferentes valores para as potências 
nas duas saídas desse acoplador. A medição dessas potências permitirá caracterizar a grandeza em causa.

Figura 5.12 - Representação esquemática do sensor interferométrico de Mach-Zehnder.

Indicando por ψ∆  a diferença de fase entre os dois feixes à entrada do segundo acoplador, tem-se que as 
potências à saída desse acoplador são dadas por:

2
cos2

01
ψ∆

= PP 								      
(5.40)

	

2
sen2

02
ψ∆

= PP 								        (5.41)

onde P0  é a potência inicial. Se 0=∆ψ  rad toda a potência sai pela fibra 1, enquanto que se pψ =∆  rad toda a 
potência sai pela fibra 2. Para outros valores da diferença de fase a potência divide-se pelas duas saídas. 



144

Dado que as variações da diferença de fase ψ∆  entre os dois braços provocadas pela perturbação externa é 
geralmente bastante pequena (da ordem dos mili- ou microradianos), verifica-se que, se o sensor operar perto de 
um extremo (mínimo ou máximo) das potências P1 e P2 , a modulação dessa potência daí resultante será mínima. 
O ponto de funcionamento que proporciona uma sensibilidade máxima corresponde a uma diferença de fase 

2
)12( pψ +=∆ p

 
rad, sendo referido habitualmente como ponto de quadratura.

5.10. Problemas resolvidos 

PR 5.1. Uma vara de vidro, com índice de refracção n=1.5, tem secção rectangular e encontra-se dobrada como 
mostra a Fig. 5.13. Um feixe de luz colimada incide perpendicularmente à superfície plana A. Determine o valor 
mínimo da razão R/d para o qual toda a luz que entra na vara através da superfície A sai através da superfície B.

Figura 5.13 – Geometria para a propagação de luz numa vara de vidro dobrada.

Resolução
O raio de luz que entrando em A e se propaga junto à parede interna da vara de vido reflecte-se na parede 

externa com o menor ângulo de incidência α, como se representa na Fig 5.13, sendo o raio reflectido tangente à 
parede interna. O raio em causa deve reflectir-se totalmente até chegar a B. Se α > θc 

, toda a luz que entra em A 
sai em B. Assim, deve ter-se

n
1sen >α 									              (1)

A geometria da Fig. 5.13 dá:

dR
Rsen
+

=α 								             (2)

Assim, deve ser
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								           	      (3)

Ou seja,

2
1

1
d
R

min
=

-
=








n
								             (4)
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PR 5.2. Considerando a geometria associada ao raio (2) da Fig. 5.2 e assumindo uma situação próxima de reflexão 
interna total, obtenha 

a) uma expressão para a profundidade de penetração do campo evanescente na bainha e 
b) o valor dessa profundidade de penetração para um ângulo próximo do ângulo crítico e para um 

comprimento de onda λ=1.3 μm. 

Resolução
a) Considerando a geometria da Fig. 5.2 e usando a lei de Snell, tem-se:

1
2

2
2

2
1

2
2

2 cos1cos1 θθθ
n
nsen -=-=sen 		    				          (1)

Quando o ângulo de incidência na interface núcleo/bainha excede o ângulo crítico a raiz quadrada na Eq. 
(1) torna-se imaginária, tendo-se:

δθθ i
n
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2
2
2

2
1

2 cos1sen 				       			        (2)

Nesta situação, a amplitude da onda transmitida do núcleo para a bainha pode-se escrever na forma:
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	      	                  		       (3)

A Eq. (3) mostra que a amplitude da onda transmitida para a bainha decresce exponencialmente na 
direcção do eixo dos y. A profundidade de penetração, ξ , é dada pelo inverso da constante de decaimento δk2 :
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b) Para um ângulo próximo do ângulo crítico e para um comprimento de onda λ=1.3μm, tem-se ξ ≈10μm. 
Este resultado mostra que a bainha deve ser suficientemente espessa para conter a onda evanescente até que 
a sua amplitude seja praticamente nula. Por outro lado, atendendo a que uma parte considerável da energia 
transmitida ao longo a fibra é transportada por essa onda evanescente, o vidro da bainha deve ser de qualidade 
praticamente tão elevada como o do núcleo, de forma a minimizar as perdas.

PR 5.3. 
a) Demonstre a condição dada pela Eq. (5.7) para o produto do ritmo de transmissão, B,  pela distância L. 
b) Calcule o ritmo máximo de transmissão imposto pela dispersão intermodal para um sistema de 

comunicação que utilize fibras ópticas com um comprimento L=10 km, tais que i) n1 = 1.5  e  n2 = 1 ; ii) n1 = 1.5  
e  n2 = 1.497. Que conclusão pode tirar dos resultados obtidos?

Resolução
a) Consideremos os dois casos extremos no que respeita aos raios guiados na geometria da Fig. 5.2. O 

percurso mais curto ocorre para θi  = 0 e corresponde a uma distância exactamente igual ao comprimento da 
fibra, L. O percurso mais longo ocorre para o ângulo θi  = θi,max , dado pela Eq. (5.3), e corresponde a uma distância            
L/senφc . Considerando a velocidade de propagação v = c/n1 , o atraso temporal é dado por:
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Num sistema de comunicação por fibra óptica, o atraso temporal ∆T deve ser menor que o tempo de bit       
TB = 1/B , sendo B o ritmo de transmissão. Deste modo, usando a Eq. (1), tem-se que o produto do ritmo de 
transmissão pela distância percorrida deve satisfazer a condição:
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O resultado final é válido se n1 ≈ n2 .

b) Usando a Eq. (1), tem-se
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Para os dois casos considerados, obtém-se

i)    B < 0.04 Mb/s
ii)   B < 10 Mb/s

Conclui-se, assim, que a introdução de uma bainha com um índice de refracção próximo do índice de 
refracção do núcleo permite aumentar significativamente o ritmo de transmissão.

PR 5.4. Considere uma fibra óptica em que o núcleo tem um índice de refracção n1= 1.465  e a bainha tem um 
índice de refracção n2=1.460. Determine 

a) o valor máximo do raio do núcleo para se ter uma fibra monomodo e 
b) o número de modos guiados quando esse raio é a = 16μm. Considere que a luz tem um comprimento de 

onda   λ = 1.25μm.

Resolução
a) O valor máximo do raio que garante um regime monomodo para a fibra pode ser calculado a partir da 

condição

4048.22
2

2
10 <-= nnakV 							             (1)

Da Eq. (1) obtém-se o valor máximo do raio do núcleo para se ter uma fibra monomodo:

95.3)1025.1(
)46.1()465.1(2
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a 1.25 ×   10−6 3.95μm

(1.465)2 − (1.46)2

 2.4048                      2.4048 			        
(2)

b) O número V da fibra cujo núcleo tem um raio a = 16 μm é:
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2 226
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pV .25 × 10−6 16 × 10−6  (1.465)2  − (1.46)2   = 9.732π
				         (3)
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Para uma fibra multimodo com um valor elevado de V, o número de modos guiados é dado aproximadamente 
por V 2/2 . Neste caso, tem-se

47
2
1 2

max == Vn 47
								             

(4)

PR 5.5. Mostre que, no caso de uma fibra com índice gradual apresentando um perfil parabólico (α = 2 na Eq. 
(5.8)), um raio meridional lançado na fibra segundo um ângulo θ 0 com o eixo tem uma trajectória sinusoidal, 
sendo a distância ao eixo dada por
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onde ∆= 2/ab .

Resolução
Para descrever a propagação de um raio luminoso numa fibra com índice gradual, torna-se conveniente 

considerar a equação da eikonal em coordenadas cilíndricas:
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Verifica-se facilmente que a eikonal deste problema se pode apresentar na forma:

012

2/1
2
12

2
22),,( czccdrc

r
cnzrL +++








--= ∫ φφ dr 	     				         (2)

onde c0 , c1 e c2 são constantes.

A equação diferencial da trajectória do raio luminoso é dada pela Eq. (1.53):
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

 é o vector de posição. Exprimindo este vector em coordenadas cilíndricas e diferenciando, obtém-se:
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A partir das Eq.s (1)-(5), obtém-se as equações:
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Suponhamos que o ponto de incidência do raio à entrada da fibra coincide com a origem das coordenadas 
(z = 0,  r = 0, φ = 0) e que a direcção inicial desse raio faz um ângulo θ 0 com o eixo dos z. Nestas condições, as 
constantes c2  e  c1 obtidas a partir das Eq.s (7) e (8) são:

c2 = 0 ,     c1 = n1cosθ 0   				     			        (9)

Verifica-se que, para as condições de lançamento consideradas, o raio não abandona o plano meridional     
φ = 0.

Para se obter a trajectória do raio, pode-se dividir, membro a membro, a Eqs (6) e (8), introduzindo depois 
a Eq. (5.8) com α = 2 e substituindo as constantes c2  e  c1  pelos resultados anteriores. Chega-se então à equação:
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A integração da Eq. (10) permite obter o resultado:
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onde ∆= 2/ab . Verifica-se da Eq. (11) que o raio tem uma trajectória sinusoidal, com uma amplitude 

0senθbA =  e um período espacial 0cos2 θpbz p = .

No caso de as condições iniciais do lançamento do raio não serem as assumidas anteriormente, a solução 
do problema será mais complexa. Em geral, o raio guiado não se restringe ao plano meridional e apresenta uma 
trajectória helicoidal.

PR 5.6. No caso de uma fibra monomodo com um grau de birrefringência δ, a potência é trocada periodicamente 
entre os dois modos ortogonais. Encontre uma expressão para o período dessa troca.

Resolução
Numa fibra monomodo birrefringente, o modo polarizado segundo o eixo dos x (y) tem uma constante de 

propagação cnxx /ωβ =  ( cnyy /ωβ = ), onde nx (ny ) é o índice de refracção efectivo para esse modo. O eixo ao 
longo do qual o índice de refracção é inferior (superior) é chamado eixo rápido (lento), dado que a velocidade de 
grupo é superior (inferior) para a luz que se propaga nessa direcção.  Tem-se

effyx n
c

∆=-=∆
ωβββ 							             (1)

onde  yxeff nnn -=∆ . 

Considere-se o campo óptico dado na forma:

( ) ( )[ ]jziEiEzizE yxx
ˆexpˆexp)( 00 ββ ∆-+=



					          (2)

onde  E0x e E0y são as amplitudes iniciais segundo os eixos x e y, respectivamente. A Eq. (2) descreve uma onda 
cujo estado de polarização evolui de uma polarização linear para uma polarização elíptica, retornando depois 
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à polarização linear inicial quando pβ 2=∆ z . O período espacial deste processo, conhecido como distância de 

batimento, é dado por:
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sendo δ dado pela Eq. (5.28).

PR 5.7. Mostre que o atraso relativo, Dt∆ , no tempo de chegada da informação nas frequências ω1  e  ω2, depois 
de percorrida uma distância z, devido à dispersão da velocidade de grupo é dada por:  

( )ztD 122 ωωβ --=∆ 		

Comente o resultado em função dos regimes de dispersão possíveis.

Resolução
O atraso relativo, Dt∆ , no tempo de chegada da informação nas frequências  ω1  e  ω2 , depois de percorrida 

uma distância z, é dado pela diferença dos respectivos tempos de propagação, ti = z/vg (ωi):
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Expandindo no numerador vg (ωi) 
em série de Taylor em torno de uma dada frequência ω0 e assumindo 

que, no denominador, vg (ω1) vg (ω2) ≈ v2   , tem-se
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Considerando que, pela Eq. (5.34), se tem

										               (3)
22
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a Eq. (2) pode apresentar-se na forma:
                                                 

( )ztD 122 ωωβ --=∆                                            					          (4)
                                                                            
A Eq. (4) mostra que a diferença no tempo de chegada das duas frequências é proporcional à dispersão da 

velocidade de grupo, β2 , à diferença das frequências, ω2− ω1 , e à distância de propagação, z. Se β2 < 0  (regime de 
dispersão anómala) as frequências mais elevadas chegam primeiro, enquanto para β2 > 0  (regime de dispersão 
normal) acontece o contrário. 

PR 5.8. Considere um impulso Gaussiano, descrito pela Eq. (5.36), lançado na entrada (z = 0) de uma fibra 
óptica, que apresenta uma dispersão da velocidade de grupo β2 . Obtenha uma expressão para o impulso após ter 
percorrido uma distância z na fibra e verifique que a largura do impulso evolui de acordo com Eq (5.37).
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Resolução
O espectro do impulso à entrada da fibra é obtido calculando a transformada de Fourier da Eq. (5.36): 
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Cada componente espectral do impulso percorre a distância  z  na fibra com uma constante de propagação 
β(ω), experimentando uma variação da fase β(ω)z. Deste modo, a função que descreve o impulso no domínio do 
tempo na posição z é dada pela transformada de Fourier inversa:
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Expandindo a constante de propagação até ao termo de segunda ordem, tem-se: 
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onde )( 00 ωββ = , gvdd /1/ =ωβ  e 2
22 / βωβ =dd . Substituindo a Eq. (3) na Eq. (2) e realizando a integração, 

obtém-se
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A Eq. (8) corresponde à Eq. (5.37) e dá a meia largura no ponto 1/e da intensidade do impulso, tp(z), depois 
de percorrida uma distância z na fibra.

PR 5.9. Com base no resultado obtido no problema PR 5.8, 
a) mostre que a energia do impulso se mantém constante durante a propagação na fibra e 
b) caracterize o trinado do impulso para os regimes de dispersão normal e anómala.

Resolução
a) A energia do impulso é proporcional ao produto do pico da intensidade pela largura do impulso. Da      

Eq. (4) do problema PR 5.8 tem-se que o pico de intensidade  numa posição arbitrária z é dada por:
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Usando a Eq. (8) do problema PR 5.8, tem-se
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Este resultado mostra que a energia do impulso numa posição arbitrária é igual ao seu valor inicial.

b) A Eq. (5) do problema PR 5.8 mostra que a fase do impulso varia com o quadrado do tempo. Como 
consequência, a frequência instantânea também varia com o tempo, pelo que o impulso se encontra trinado. A 
frequência instantânea é dada pela derivada da fase em ordem ao tempo:
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A taxa de variação da frequência com o tempo é dada por

κω 2=
∂
∂

t
									              (4)

Este resultado mostra que no regime de dispersão normal ( 0>κ ) a frequência instantânea numa dada 
posição z aumenta com o tempo. Como consequência, o espectro na parte da frente do impulso é desviado para 
o vermelho, enquanto na parte de trás é desviado para o azul. Por outro lado, no regime de dispersão anómala            
( 0<κ ) a frequência instantânea decresce com o tempo. Neste caso, o espectro na parte da frente do impulso é 
desviado para o azul, enquanto na parte de trás é desviado para o vermelho. Estas características do trinado são 
ilustradas na Fig. 5.7

PR 5.10. Considerando as Eq.s (5.38) e (5.39) para as potências nas duas fibras de um acoplador, obtenha a 
distância mínima z ao fim da qual 

a) toda a potência se transfere da fibra de entrada para a outra fibra e  
b) o acoplador funciona como um divisor de potência 50:50. 

Resolução
a) Verifica-se das Eq.s (5.38) e (5.39) que para

,
2

)12(
m

p
+= pz 	 p = 0, 1, 2, 3, ...		    	     			         (1)

se tem P1 (z) = 0,  P2 (z) = P1 (0), pelo que a toda a potência lançada na fibra 1 se encontra na  fibra 2. A distância 
mínima ao fim da qual isso acontece é dada por:

m
p
2

=az 						          			        (2)

Esta distância é conhecida como a distância de acoplamento.

b) Se a distância de interacção do acoplador linear for mp 4/== Lz , verifica-se das Eq.s (5.38) e (5.39) 
que as potências à saída de cada uma das fibras do acoplador são
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2
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Ou seja, o acoplador direccional funciona neste caso como um divisor de potência 50:50. Atendendo a que a 
constante de acoplamento, μ, varia com o comprimento de onda, este resultado verifica-se, em rigor, apenas para 
um determinado comprimento de onda.

PR 5.11. Mostre que, dada a dependência da constante de acoplamento com o comprimento de onda da luz, se pode 
usar um acoplador direccional, para realizar a desmultiplexagem de um sinal com dois comprimentos de onda, λ1 e λ2 .

Resolução
Considere-se um acoplador direccional com comprimento L constituído por fibras idênticas e com constantes 

de acoplamento μ1 e μ2 , correspondentes aos comprimentos de onda λ1 e λ2 , respectivamente, tais que

pm pL =1 						         			        (1)

e

2
)12(2
pm += pL 					       			        (2)

Nestas circunstâncias, suponhamos que é lançada luz com esses dois comprimentos de onda em simultâneo 
numa das fibras do acoplador, de tal modo que

)0,()0,()0( 21111 ll PPP += 				        			        (3)

Neste caso, tem-se para a luz com comprimento de onda λ1 que
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2
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enquanto para a luz com comprimento de onda λ2 se tem
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Ou seja, a luz com comprimento de onda λ1 sairá pela fibra de entrada, enquanto a luz com comprimento 
de onda λ2 sairá pela outra fibra, conseguindo-se assim realizar a desmultiplexagem desejada.

PR 5.12. Verifica-se ser possível medir com o sensor interferométrico de Mach-Zehnder variações de fase da 
ordem de 10−6 rad. Considerando que a luz usada tem um comprimento de onda λ = 1μm, determine a variação 
correspondente do comprimento da fibra. 

Resolução
Uma variação da fase ψ∆ corresponde a uma variação do comprimento da fibra dada por:
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Considerando o valor referido para a variação mínima da fase e supondo que o índice de refracção do 
núcleo da fibra é n = 1.5, tem-se 
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Ou seja, o sensor pode medir variações do comprimento da fibra da ordem de um décimo de pm.
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5.11. Problemas propostos

PP 5.1. Mostre que, no caso de uma fibra óptica em que os índices de refracção do núcleo e da bainha são muito 
próximos, a abertura numérica pode apresentar-se na forma dada pelas Eq.s (5.5) e (5.6).

PP.5.2. A diferença entre os índices de refracção do núcleo e da bainha de uma fibra óptica com índice em degrau 
é de 1%. Calcule o índice de refracção do núcleo sabendo que a abertura numérica da fibra é AN = 0.18.

PP 5.3. Num sistema de comunicações, a atenuação da fibra óptica é de 0.5 dB/km, existindo uma atenuação 
adicional de 1dB nas junções, cujo espaçamento é de 10 km. Calcule o comprimento máximo que esse sistema pode 
ter, sabendo que a potência debitada pelo laser emissor é de 1.5 mW e que o nível de detecção limiar é de 2mW.

PP 5.4. Considere uma fibra óptica com índice em degrau, tendo um núcleo de raio a = 25 μm e índice de refracção 
n1 = 1.475, e uma bainha com índice n2 = 1.460. 

a) Obtenha o valor máximo do ângulo entre o raio e o eixo da fibra para o qual o raio pode ser guiado. 
b) Calcule o número de reflexões na interface núcleo/bainha que sofreria um raio propagando-se segundo 

esse ângulo numa fibra com 1 km de comprimento.
c) Assumindo que em cada uma das reflexões da alínea anterior se verifica uma atenuação da potência de 

0.01%, calcule a atenuação total em dB/km.

PP 5.5. Determine o ritmo máximo de transmissão determinado pela dispersão intermodal para o caso de uma 
fibra óptica com as características referidas no problema anterior e comprimento L = 20 km.

PP 5.6. Assumindo que a solução da Eq. (5.11) é dada na forma  Eωz(r,φ, z) = F(r)Φ(φ)Z(z), mostre que se tem  
Z(z) = exp(iβz) e Φ(φ) = exp(imφ), onde β é a constante de propagação e m é um número inteiro. Mostre ainda 
que F(r) satisfaz a Eq. (5.13). 

PP 5.7. Partindo das equações de Maxwell, obtenha as Eq.s (5.20)-(5.23) para as componentes transversais dos 
campos eléctrico e magnético.

PP 5.8. Considere uma fibra óptica com índice em degrau, com um núcleo de raio a = 4 μm  e  índice de refracção  
n1=1.45, assim como uma diferença relativa dos índices de refracção ∆=3×10−3. Diga para que valores do compri-
mento de onda esta será uma fibra monomodo.

PP 5.9. Explique a origem da birrefringência modal nas fibras ópticas e a razão por que ela determina em geral 
um alargamento temporal dos impulsos.  

PP 5.10. A diferença entre as constantes de propagação, ∆β, dos dois modos polarizados ortogonalmente numa 
fibra birrefringente, dada pela Eq. (1) do problema PR 5.6, determina um atraso temporal relativo, ∆τ, entre eles, 
dado por ∆τ = Ld(∆β)/dω, sendo L o comprimento da fibra. 

a) Mostre que esse atraso temporal se pode escrever na forma:
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b) Desprezando a dispersão de effn∆ , mostre que o atraso temporal correspondente à distância de 
batimento, dada pela Eq. (3) do problema PR 5.6, é fb /1=∆τ , sendo f a frequência da luz transmitida na fibra. 

PP 5.11. Uma fibra com três metros de comprimento é usada como sensor interferométrico das variações de 
temperatura. O índice de refracção da fibra é n = 1.46, enquanto que a variação desse índice de refracção com a 
temperatura é dada pelo coeficiente dn/dT = 1.5 × 10−5 K−1 e o coeficiente de expansão térmica linear do material 
da fibra é σ = 6.5 × 10−7 K−1. Determine a menor variação de temperatura que pode ser detectada, assumindo que 
a resolução do sensor, em termos da variação de fase da luz, é de 0.1 rad.

PP 5.12. Um impulso Gaussiano propaga-se numa fibra óptica que apresenta dispersão da velocidade de grupo     
β2 = 20 ps2km−1. A largura do impulso aumenta com a distância de propagação de acordo com a Eq (5.37). Calcule 
a distância percorrida pelo impulso se a sua largura aumentar vinte vezes relativamente ao valor inicial t0 =  5 ps. 

5.12. Referências bibliográficas

1.	 A. G. Ghatak e K. Thyagarathan, An Introduction to Fiber Optics, Cambridge University Press, 1998.

2.	 A. Kaiser, Optical Fibre Communications, 4th Ed., McGraw-Hill, 2010.

3.	 J. C. Palais, Fiber Optic Communications, 4th Ed., Prentice Hall, 1998.

4.	 J. M. Senior, Optical Fibre Communications: Principles and Practice, 3th Ed., Pearson Education, 2009.

5.	 A. W. Snyder e J. D. Love, Optical Waveguide Theory, Chapman Hall, 1983.

6.    M. F. Ferreira, Nonlinear Effects in Optical Fibers, John Wiley & Sons, 2011.



155

Capítulo 6

LASERS E LUZ LASER
 

Os lasers constituem uma importante ferramenta no âmbito da investigação que se faz hoje em praticamente 
todas as áreas da ciência. Por outro lado, eles são usados em variadas aplicações no nosso dia-a-dia, desde a leitura 
de códigos de barras até aos leitores de CD, ou no domínio da tecnologia, desde as comunicações ópticas até ao 
processamento de materiais ou à medicina.

O processo de emissão estimulada constitui a base do funcionamento do laser e foi demonstrado teorica-
mente por Albert Einstein já em 1917. Contudo, apenas nos primeiros anos da década de cinquenta do século 
passado, na sequência dos trabalhos de Charles H. Townes (EUA), Alexander M. Prokhorov e Nikolai G. Basov 
(ex-União Soviética), se conseguiu pôr a funcionar um dispositivo de microondas que amplificava a radiação 
através desse processo de emissão estimulada. Este dispositivo foi designado por MASER, um acrónimo da 
expressão inglesa “Microwave Amplification by Stimulated Emission of Radiation”. Em 1958, Charles H. Townes 
e Arthur L. Schawlow publicaram um artigo em que discutiam a extensão dos princípios do maser à região óptica 
do espectro electromagnético. O funcionamento do chamado maser óptico, ou laser, foi conseguido pela primeira 
vez por Theodore H. Maiman em Junho de 1960, que utilizou para o efeito, como meio activo, um pequeno cristal 
sintético de rubi rosa, com faces paralelas entre si, perpendiculares ao eixo e espelhadas, instalado no eixo de uma 
lâmpada de descarga gasosa helicoidal. Desde então, uma grande variedade de lasers foram sendo desenvolvidos.

Qualquer tipo de laser é constituído por três elementos essenciais (Fig. 6.1): (1) um meio activo, ou seja, um 
conjunto de átomos, moléculas ou iões (designados a seguir genericamente por ‘átomos’) capaz de emitir radiação 
óptica; (2) uma fonte de bombeamento de energia capaz de excitar os átomos do meio activo; e (3) uma cavidade 

de ressonante, constituída por dois espelhos nos quais o feixe de radiação é sucessivamente reflectido, obrigando-o 
a passar um número elevado de vezes através do meio activo. Nas secções seguintes abordar-se-á separadamente 
cada um destes aspectos.

Figura 6.1 – Representação dos elementos essenciais de um laser: o meio activo, a fonte de bombeamento

 e a cavidade ressonante.
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6.1. O meio activo - Absorção e emissão 
de radiação

Considere-se um meio activo cujos átomos são caracterizados por dois estados de energia: o estado 
fundamental, de energia E0 , e um estado excitado, de energia E1 (E1 > E0). Na presença de radiação com uma 
frequência

h
EE 01

10
-

=νv10 								          (6.1)

onde h = 6.626 × 10−34  J.s é a constante de Planck, verifica-se a passagem de alguns átomos do estado fundamental 
para o estado excitado. Este processo designa-se por absorção estimulada.

Uma vez no estado excitado, um átomo pode emitir um fotão de energia v10 e regressar ao seu estado 
fundamental. Este processo pode ocorrer sem qualquer influência externa, sendo então designado por emissão 

espontânea, ou ser induzido por um fotão pré-existente com aquela mesma frequência, situação em que se fala de 

emissão estimulada. Neste último caso, o fotão emitido apresenta as mesma características do fotão estimulante.  
A Fig. 6.2 ilustra os três processos de transição referidos.

		     (a)                                 	    (b)                                                 	  (c)

Figura 6.2 - Diagramas representativos dos processos de transição num meio activo: 
(a) absorção estimulada, (b) emissão espontânea e (c) emissão estimulada.

As taxas dos três processos de transição referidos anteriormente encontram-se relacionadas entre si. No 
caso da emissão espontânea, a taxa respectiva é proporcional ao número de átomos, N1 , que se encontram no 
estado excitado de energia E1 , podendo escrever-se
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onde A10 é o chamado coeficiente de Einstein para a emissão espontânea. A população N1  decresce com uma constante 
de tempo τ = 1/A10 , verificando-se um despovoamento do nível com energia E1 a um ritmo N1 / τ   e um povoamento 
do nível com energia E0 ao mesmo ritmo. A constante τ é conhecida por tempo de vida da emissão espontânea.

As transições relativas à absorção ou à emissão estimuladas ocorrem apenas na presença de radiação 
estimulante. No caso da absorção, Einstein postulou que a respectiva taxa de transição seria proporcional ao número 
de átomos no estado fundamental, N0 , e à densidade espectral de energia do campo incidente ρ(v10) (unidades de 
energia por unidade de volume por unidade de intervalo de frequência, Jm 3- Hz 1- ) com frequência v10 :
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onde a constante de proporcionalidade, B01 , é o chamado coeficiente de Einstein para a absorção estimulada. De 
modo semelhante, a taxa de transição para o processo de emissão estimulada é proporcional ao número de átomos 
no estado excitado,  N1 , e à densidade espectral de energia do campo incidente ρ(v10) , tendo-se:
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onde B10  é o chamado coeficiente de Einstein para a emissão estimulada. 

Numa situação de equilíbrio térmico, verifica-se um balanço entre os três processos anteriores, traduzido pela 
condição

A10 N1 +  B10 N1 ρ(v10) = B01 N0 ρ(v10)				         		    (6.5)

As populações 1N  e 0N  encontram-se relacionadas através da chamada distribuição de Boltzman:
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onde T é a temperatura absoluta e  kB  é a constante de Boltzman. 

Das Eq.s (6.5) e (6.6) tem-se
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Por outro lado, a densidade espectral de energia ρ(v) é dada pela lei da radiação de Planck:
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As Eq.s (6.7) e (6.8) conduzem à igualdade:
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A Eq. (6.9) é satisfeita quando
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e

B01 = B10 						          	  (6.11)
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As Eq.s (6.10) e (6.11) são designadas por relações de Einstein. Elas podem ser generalizadas a um par 
arbitrário de estados de energia atómicos, Ei  e  Ej  (Ej  > Ei ), substituindo E0  por  Ei  e  E1  por  Ej 

.

Da discussão anterior ressaltam duas ideias importantes para se conseguir o funcionamento de um laser. 
A primeira tem que ver com a existência de um processo, a emissão estimulada, que proporciona a amplificação 
da luz. A segunda refere-se à necessidade de se conseguir a inversão da população nos dois níveis de energia 
dos átomos do meio activo, de tal modo que  o efeito dessa emissão estimulada seja superior ao efeito contrário, 
devido à absorção estimulada.

6.2. Coeficientes de absorção e de ganho

Considere-se um feixe colimado de luz monocromática, de frequência vij = (Ej − Ei ) /h, que se propaga 
na direcção do eixo dos z e passa por um meio activo homogéneo. A variação da intensidade entre dois planos 
situados em  z  e  z +∆z  é dada por:

)()()( zIzzIzI -∆+=∆

            zzI ∆-= )(α 				                         		                  (6.12)

onde α é o chamado coeficiente de absorção e o sinal menos traduz a redução da intensidade determinada pela 
absorção. 

A Eq. (6.12) pode ser escrita na forma de uma equação diferencial:
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							             	 (6.13)

A solução da Eq. (6.13) é dada por:

)exp()0()( zIzI α-= 						        	 (6.14)

sendo I(0) a  intensidade à entrada do meio activo. A Eq. (6.14) mostra que a intensidade decresce exponencialmente 
quando o feixe se propaga num meio em que o efeito da absorção é dominante.

Se, ao passar pelo meio activo, o número de emissões estimuladas exceder o número de absorções, a 
intensidade aumentará em vez de diminuir. O número de emissões estimuladas depende da densidade espectral 
de energia )(νρ , que se relaciona com a intensidade na forma

c
I )()( ννρ = 							             	 (6.15)

Assumindo que o feixe é constituído por radiação perfeitamente monocromática, mostra-se no Problema 

PR 6.3 que a evolução da intensidade no meio activo é dada por
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)exp()0()( zIzI β= 							            	 (6.16)

onde β  é o chamado coeficiente de ganho, dado por:
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sendo ni  e  nj 
 as densidades de população nos níveis de energia inferior e superior, respectivamene.

Pode-se ver da Eq. (6.17) que se  nj  > ni  então β  é positivo e a intensidade aumenta com a distância. Este pro-
cesso, que consiste na amplificação da luz por emissão estimulada, constitui a base para o funcionamento dos lasers.

A amplificação da luz por emissão estimulada é possível apenas quando a população do nível superior de 
energia excede a população do nível inferior, condição conhecida por inversão da população. Esta situação pode 
ser atingida através de um bombeamento adequado do meio activo. O facto de o coeficiente de ganho dado pela 
Eq. (6.17) ser inversamente proporcional ao quadrado da frequência vij  indica que será mais difícil construir lasers 
emitindo luz na região do ultravioleta do que na região do infravermelho.

6.3.  Bombeamento do laser

Considerando um par arbitrário de estados de energia   Ei  e  Ej  (Ej  > Ei 
), a Eq. (6.6) assume a forma:
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onde ∆Eji = Ej − Ei . Quando kBT « ∆Eji  a razão anterior é bastante pequena e praticamente não existem átomos 
no estado excitado. Por outro lado, para temperaturas suficientemente elevadas, situação em que kBT » ∆Eji 

, a 
população no nível de energia Ej aproxima-se da população no nível  Ei 

. De qualquer modo, numa situação de 
equilíbrio térmico, a população no nível de energia Ej nunca pode ser superior à população no nível Ei . Para se 
conseguir a inversão de população, os átomos devem ser excitados - ou bombeados - por recurso a uma fonte 
externa de energia. 

O bombeamento do meio activo de um laser pode ser de natureza óptica, eléctrica, química ou térmica. No 
caso dos lasers gasosos, o método de bombeamento mais habitual consiste numa descarga eléctrica. Em alguns 
lasers deste tipo, os electrões livres, gerados no processo da descarga, colidem e excitam directamente os átomos 
do meio activo. Noutros lasers gasosos, a excitação ocorre através de colisões inelásticas entre átomos. Neste 
caso, usa-se uma mistura de dois gases, tais que as duas espécies de átomos têm estados excitados idênticos. Um 
exemplo é o laser de He-Ne, no qual os átomos de néon (Ne) são excitados por transferência de energia fornecida 
pelos átomos de hélio (He) que se encontram num estado meta-estável. Os átomos de hélio recebem essa energia 
dos electrões livres que com eles colidem.
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Figura 6.3 - Distribuição da população  num sistema de três níveis.

Um dos esquemas possíveis para o bombeamento do laser faz uso de três níveis de energia, como se 
representa na Fig. 6.3. Quando os átomos do meio activo são excitados pela fonte de bombeamento, uma parte 
deles passa do estado fundamental ao estado com energia mais elevada, E2 , de onde decaem depois para o estado 
meta-estável de energia E1. Verifica-se a inversão da população quando a população deste último estado é superior 
à do estado fundamental. Para que esta situação seja atingida facilmente é necessário que a transição de E2 para 
E1 seja rápida. 

Figura 6.4 - Distribuição da população num sistema de quatro níveis.

No caso de um sistema de três níveis, são necessárias potências de bombeamento relativamente elevadas, 
dado que o estado final da transição laser é o estado fundamental e mais de metade dos átomos neste nível devem 
ser bombeados para o estado excitado de modo a verificar-se a inversão da população. Contudo, a potência de 
bombeamento pode ser bastante reduzida no caso de um esquema com quatro níveis, como se ilustra na Fig, 6.4. 
Neste caso, os átomos do estado fundamental são excitados através do bombeamento para o nível de energia mais 
elevado,  E3 , a partir do qual eles decaem para o estado meta-estável de energia  E2 . Se as transições de  E3  para  
E2  e de E1 para E0 forem rápidas comparativamente com a transição de  E2  para  E1 , a inversão da população, 
nesta última transição, pode ser conseguida com valores modestos da potência de bombeamento.

Os esquemas de bombeamento de alguns tipos de lasers são bastante mais complexos que os esquemas de 
três ou de quatro níveis referidos anteriormente. Contudo, estes esquemas podem constituir excelentes modelos 
para um grande número de lasers reais.
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6.4. Realimentação óptica

A amplificação proporcionada pelo meio activo quando a luz o atravessa uma única vez é, em geral, 
relativamente baixa. Contudo, esta limitação pode ser ultrapassada usando espelhos, com os quais o comprimento 
efectivo do meio amplificador se torna um múltiplo elevado do comprimento do laser. Os espelhos proporcionam 
a realimentação óptica do sistema e formam uma cavidade óptica ressonante que suporta oscilações electro-
magnéticas com a frequência da transição laser. A oscilação tem origem na emissão espontânea de radiação, que 
é posteriormente amplificada, até se atingir um certo estado estacionário. No regime estacionário, toda a energia 
adicional proporcionada pelo processo de emissão estimulada serve para alimentar a potência de saída do laser.

6.4.1.Condição limiar de um laser

Considere-se que o meio activo preenche completamente a região entre os dois espelhos, E1 e E2 , do laser e 
que o bombeamento é uniforme. Quando a radiação se desloca desde o espelho E1 até ao espelho E2 , a intensidade 
aumenta desde o seu valor inicial  I0 até um valor I dado por:

( ){ }dII pαβ -= exp0 					                       	 (6.19)

onde d é a separação entre os espelhos, β  é o coeficiente de ganho e  αp são as perdas devidas à dispersão e 
eventual absorção por parte dos constituintes não-activos do laser. Depois da reflexão no espelho E2 , a razão 
entre a intensidade reflectida e a intensidade inicial I0 é dada por ( ){ }dr pαβ -exp2

2 , sendo r2  o coeficiente de 
reflexão em amplitude do espelho. Após uma volta no meio activo e uma reflexão no espelho E1 , a razão entre as 
intensidades final, If  

, e inicial, I0 , é dado por:

( ){ }drrG
I
I

p
f αβ -=≡ 2exp2

2
2

1
0

					           	 (6.20)

onde r1 o coeficiente de reflexão em amplitude do espelho E1 . 

O parâmetro G, dado pela Eq. (6.20), representa o ganho líquido em potência numa volta do laser. Se 
G > 1, verifica-se a amplificação da radiação com frequência igual à frequência de ressonância do laser, o que 
corresponde a um aumento das oscilações da cavidade. Por outro lado, se G < 1, as oscilações no interior da 
cavidade acabam por desaparecer. A condição limiar de oscilação do laser é dada por G = 1. Apenas quando esta 
condição é verificada durante um certo tempo a potência de saída do laser adquire um valor estacionário. 

Fazendo G = 1 na Eq. (6.20) pode-se obter o seguinte resultado para o valor limiar do coeficiente de ganho, limβ :
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Verifica-se da Eq. (6.21) que, no regime estacionário, o ganho deve ser igual à soma das perdas por absorção 
pelo material (αp ) com as perdas correspondentes à emissão de luz para o exterior (α0).  A estabilização do 
coeficiente de ganho no seu valor limiar é habitualmente referida como saturação do ganho.

6.4.2. Modos longitudinais 

Os espelhos de um laser formam uma cavidade ressonante na qual a luz pode ser armazenada por múltiplas 
reflexões entre eles. Apenas para certas frequências da luz essas sucessivas reflexões estão em fase, ou seja, a 
diferença de fase entre elas satisfaz a relação:

ppϕ 2=∆ ,   p inteiro						            	 (6.23)

pelo que as ondas reflectidas constituem réplicas das ondas iniciais. A condição para que isto se verifique é que o 
comprimento da cavidade seja um múltiplo de meio comprimento de onda:

n
ppd

22
0ll

== ,     p inteiro	 						      (6.24)

onde 0l  é o comprimento de onda da luz no vazio e n é o índice de refacção do meio activo. Dado que p pode 
ser um número inteiro qualquer, existem vários comprimentos de onda, dentro da linha de transição do laser, 
que satisfazem a condição anterior. Os campos correspondentes a esses diferentes comprimentos de onda são 
designados por modos longitudinais, ou axiais. A frequência destes modos é dada por:
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nd
						            		  (6.25)

Desprezando-se a dependência do índice de refracção com a frequência, a diferença de frequências entre 
modos longitudinais vizinhos é dada por:

nd
c

pp 21 =-=∆ + ννν
nd 							       (6.26)

Se se considerar um laser gasoso, em que n ≈ 1, e um espaçamento entre os espelhos d = 30 cm, obtém- 
-se para a separação entre as frequências modais o resultado ν∆  = 500 MHz. Dado que a largura das linhas de 
transição laser é geralmente bastante superior a 500 MHz, verifica-se a possibilidade de o laser emitir luz em 
várias frequências discretas, separadas entre si de c/(2d).

6.4.3. Condição de estabilidade da cavidade ressonante

Em muitos casos, a cavidade ressonante é constituída por espelhos esféricos, dado que eles proporcionam 
geralmente uma configuração mais estável para o confinamento da luz comparativamente a outros tipos de 
espelhos. Na Fig. 6.5 representa-se o caso em que esses espelhos têm raios R1 e R2 e se encontram centrados 
no eixo dos z, separados de uma distância d. Os espelhos podem ser côncavos (R < 0) ou convexos (R > 0). Um 
espelho plano corresponde ao caso R =∞ .
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Pode-se usar o método matricial, apresentado no Capítulo 2, para determinar as condições de confinamento 
dos raios luminosos na cavidade ressonante. De facto, uma cavidade ressonante é um exemplo de um sistema 
óptico periódico, dado que os raios luminosos percorrem o mesmo sistema repetidamente. 

Figura 6.5 - Geometria de uma cavidade ressonante constituída por espelhos esféricos côncavos. 

Mostra-se no problema PR 6.6 que a condição de estabilidade para a cavidade ressonante é dada por:

10 1 ≤≤ gg 							             	 (6.27)

onde

1
1 1

R
dg +=              e           

2
2 1

R
dg += 		       				    (6.28)

são os chamados parâmetros g da cavidade. A condição (6.27) também é conhecida como condição de confinamento. 
Quando esta condição não é verificada a cavidade ressonante diz-se instável. No caso de se ter alguma das 
igualdades na Eq. (6.27) a cavidade é condicionalmente estável.

6.5. Taxa de bombeamento e intensidade 
do campo óptico

Considerando as transições dominantes para o caso de um sistema de quatro níveis, análogo ao representado 
na Fig. 6.4, mostra-se no problema PR 6.10 que, no estado estacionário, a diferença de população 12 NN -  dos 
dois níveis envolvidos na transição lasers é dada por:
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					          	 (6.29)

onde R é a taxa de bombeamento do nível fundamental para o nível de energia mais elevado, I é a intensidade do 
campo óptico na cavidade do laser, c é a velocidade da luz no vazio, A21 , A10  e  B21 são os coeficientes de Einstein 
para as transições entre os níveis 0, 1, e 2. Verifica-se da Eq. (6.29) que apenas quando A21 < A10  o numerador é 
positivo e se consegue atingir a inversão da população.
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Abaixo do limiar, a emissão estimulada a partir do nível superior da transição laser é pequena, dado 
que a intensidade na cavidade, I, é também bastante baixa. Nestas circunstâncias, a Eq. (6.29) pode ser, 
aproximadamente, escrita na forma:
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						                      (6.30)

Verifica-se que, neste regime, a diferença de população aumenta linearmente com a taxa de bombeamento. 

No limiar, a intensidade I é ainda relativamente pequena, pelo que a diferença de população nesse caso, 

lN∆ , é dada pela Eq. (6.30) com lRR = . O valor limiar da taxa de bombeamento, lR , é dado então por:
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          					                       	 (6.31)

No estado estacionário, a diferença de população não excede o seu valor no limiar, lN∆ . É de notar que o 
coeficiente de ganho β  dado pela Eq. (6.17) é proporcional à diferença de populações e que o seu valor limiar é 
determinado pela soma das perdas por absorção pelo material com as perdas correspondentes à emissão de luz 
para o exterior, como se mostra na Eq. (6.21). Deste modo, para taxas de bombeamento superiores ao respectivo 
valor limiar, tem-se da Eq. (6.29) que:   
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Figura 6.6 - Diferença de população e intensidade do campo óptico na cavidade em função da taxa de bombeamento.

Usando as Eq.s (6.31) e (6.32), pode-se escrever a intensidade do campo óptico na cavidade em função da 
taxa de bombeamento R do modo seguinte:
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						           	 (6.33)

Verifica-se deste resultado que a intensidade aumenta linearmente uma vez ultrapassada a condição limiar. 
Na Fig. 6.6  representa-se N∆  e cavI  em função da taxa de bombeamento R.
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6.6. Lasers semicondutores

Os lasers semicondutores foram inventados em 1962, mas a sua utilização tornou-se corrente apenas 
na década de setenta do século XX, depois de se ter conseguido o seu funcionamento contínuo à temperatura 
ambiente. O desenvolvimento que experimentaram desde então foi de tal ordem que eles são, actualmente, de 
entre todos os tipos de lasers, os mais importantes do ponto de vista económico. 

As aplicações dos lasers semicondutores são actualmente muito variadas, podendo referir-se, nomeada-
mente, a sua utilização no âmbito dos sistemas de comunicação por fibra óptica, nos leitores dos códigos de 
barras, nas impressoras laser, nos leitores de CDs, etc.. No caso dos sistemas de comunicação por fibra óptica, 
a preferência pelo lasers semicondutores tem que ver com as suas reduzidas dimensões (tipicamente inferiores 
a 1 mm), área de emissão compatível com as dimensões do núcleo das fibras, elevada eficiência, adequado 
comprimento de onda da luz emitida e possibilidade de modulação directa a frequências bastante elevadas.

6.6.1. Amplificação óptica num semicondutor

Se E1 e E2 forem as energias dos estados do electrão na banda de valência e na banda de condução, 
respectivamente, a probabilidade de ocorrer a absorção de um fotão com energia  hv = E2 − E1 numa situação de 
quase-equilíbrio é dada por:

[ ])(1)()( 21 EfEfP cab -= ννPab 					             		  (6.34)

onde  fc  e   fv  representam as funções de distribuição nas bandas de condução e de valência, respectivamente, 
dadas por:
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= 					                        	 (6.35)
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= 					                         	 (6.36)

sendo  Efc  e   Efv  os chamados quase-níveis de Fermi. É de notar que, se )( 1Efv  representa a probabilidade da 
ocupação de um estado na banda de valência com energia 1E , [ ])(1 2Efc-  dá a probabilidade de um estado na 
banda de condução com energia E2 estar desocupado. 

A probabilidade de ocorrer a emissão de um fotão com a mesma energia hv = E2 − E1 é dada por:

[ ])(1)()( 12 EfEfP cem νν -=Pem 				                      		  (6.37)

O processo de emissão dominará sobre o processo de absorção se se verificar a condição:

)()( νν abem PP >Pem Pab  			                     			         	 (6.38)
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Usando as Eq.s (6.34)-(6.37), a Eq. (6.38) resulta na condição:

Efc − Efv  > hv 						            		  (6.39)

Dado que deve ter-se bEh ≥ν , sendo bE  a banda de energia proibida, segue-se que 

Efc − Efv  > Eb 						            	                 (6.40)

A Eq. (6.40) representa a condição necessária para se ter amplificação óptica num meio semicondutor, 
sendo equivalente à condição de inversão da população para um sistema atómico. Pode verificar-se que não é 
possível ter amplificação óptica num semicondutor em equilíbrio térmico.

6.6.2. Díodos emissores de luz e lasers semicondutores

A aplicação de uma diferença de potencial externa no sentido directo a uma junção p-n, dá origem a 
uma corrente através da junção nesse mesmo sentido: os electrões do lado n da junção são injectados na região 
p, enquanto que as lacunas da região p são injectadas na região n. Neste processo, verifica-se a recombinação 
destes dois tipos de portadores, dando origem a radiação óptica através do processo de emissão espontânea. Este 
fenómeno é designado por electroluminiscência de injecção, sendo a base do funcionamento dos díodos emissores 

de luz (LEDs, de Light-Emitting Diodes).
A potência emitida por um LED aumenta continuamente com a corrente de injecção, como se mostra na 

Fig. 6.7 Contudo, para correntes de injecção elevadas, a potência de saída satura, podendo atingir então valores 
na ordem de alguns miliwatts. 

Figura 6.7 - Variação da potência emitida por um LED e por um laser semicondutor em função da corrente de injecção.

O espectro da luz emitida por um LED é geralmente bastante largo (da ordem de 30-80 nm). Este facto 
determina uma dispersão elevada quando o LED é usado em sistemas de comunicação por fibra óptica. Por outro 
lado, o facto de a emissão espontânea ser aleatória e se verificar em todas as direcções faz com que a luz emitida 
por um LED não seja muito direccionada, apresentando ângulos de divergência que variam desde cerca de 30º, 
perpendicularmente à junção, até cerca de 120º, paralelamente a essa mesma junção. Esta característica torna o 
acoplamento da luz às fibras ópticas monomodo pouco eficiente.
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Em geral, não é possível satisfazer a condição (6.40) quando a junção p-n é formada a partir de 
semicondutores do tipo n e do tipo p dopados moderadamente. Contudo, essa condição pode ser satisfeita no 
caso de ambos os semicondutores estarem fortemente dopados (~ 0.1%) e de a diferença de potencial aplicada ser 
também suficientemente elevada. Esta é a base do funcionamento dos lasers semicondutores. 

Nos lasers semicondutores, as faces nas extremidades do cristal são cortadas paralelamente entre si e conveniente-
mente polidas, de modo a formar uma cavidade ressonante. A grande diferença entre os índices de refracção no semicon-
dutor (n ≈ 3.5) e no ar (n ≈ 1.0) faz com que a interface entre os dois meios apresente uma reflectância de cerca de 30%, 
que é suficiente para constituir aquela cavidade. Na Fig. 6.8 indicam-se as dimensões típicas de um laser semicondutor.

Figura 6.8 – Representação esquemática de um laser semicondutor.

Como foi discutido na Secção 6.5, um laser caracteriza-se pela existência de um valor limiar para a taxa de 
bombeamento. No caso de um laser semicondutor, o bombeamento é realizado através da corrente de injecção. 
Na Fig. 6.7 mostra-se a variação típica da potência à saída do laser com essa corrente. Verifica-se que abaixo de 
um determinado valor limiar da corrente, a potência emitida pelo laser é bastante baixa, enquanto que acima 
desse valor a potência emitida aumenta significativamente. Na realidade, o declive da curva acima do limiar 
é bastante superior ao da curva abaixo desse limiar. Abaixo do limiar, a luz emitida é devida essencialmente à 
emissão espontânea e o laser semicondutor comporta-se de modo semelhante a um LED.

Um parâmetro importante para caracterizar um laser semicondutor é a sua eficiência, dada pelo declive 
da curva da Fig. 6.7 acima do limiar. Se dI representar a variação da corrente através do díodo, então a variação 
do número de electrões injectados por unidade de tempo no laser é dI/e, onde e é a carga do electrão. Se dP 
representar a variação correspondente na potência de saída do laser, então a variação do número de fotões é           
dP / hv, onde v é a frequência da radiação. A eficiência quântica externa do laser é definida por:
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Os valores típicos de η  para lasers semicondutores que funcionam no modo contínuo situam-se entre 0.25 e 
0.6. A partir da Eq. (6.41) pode traduzir-se relação entre a potência à saída do laser e a corrente de injecção na forma:
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onde limI  é a corrente limiar, cujos valores típicos são da ordem de 25 – 250 mA. A corrente limiar varia com a 
temperatura, sendo essa dependência dada por:

0/
0lim )( TTeITI = 						                        	 (6.43)

onde 0I  é uma constante e 0T  é a chamada temperatura característica do díodo.
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Quando é utilizado no âmbito dos sistemas ópticos de comunicação, torna-se necessário modular o feixe 
emitido pelo laser. Uma das propriedades mais interessantes dos lasers semicondutores é a possibilidade de 
realizar directamente essa modulação através da corrente de injecção. De facto, quando se varia esta corrente, a 
população de electrões e de lacunas na cavidade do laser também varia. Como consequência, o ganho é alterado, 
o que faz variar, por sua vez, a potência emitida pelo laser. 

A dinâmica da modulação directa de um laser semicondutor é determinada por vários factores, nomeadamente 
pelos tempos de recombinação dos portadores e pelo tempo de vida dos fotões na cavidade do laser. O tempo de 
recombinação dos portadores devido à emissão estimulada depende da densidade de fotões dentro da cavidade e 
é da ordem de 10 ps. Quanto ao tempo de vida dos fotões, ele corresponde ao tempo médio que um fotão demora 
dentro da cavidade do laser antes de ser absorvido ou de ser emitido para o exterior, sendo dado por:

limβ
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c
n

f = 								             	 (6.44)

onde limβ  é o valor limiar do coeficiente de ganho, dado pela Eq. (6.21). Considerando valores típicos para os 
parâmetro envolvidos, tem-se

  
τf  ≈ 2 ps.

Devido ao curto tempo de vida dos portadores no processo de recombinação estimulada, os lasers 
semicondutores podem ser modulados com ritmos superiores a 20 GHz.

6.6.3. Lasers semicondutores de heterojunção

Na sua versão mais simples, o laser semicondutor usa o mesmo semicondutor em ambos os lados da junção p-n, 
sendo, por isso, designado por laser de homojunção. Este tipo de laser foi inventado em 1962 e o seu funcionamento 
só é possível no regime pulsado, dado que os valores típicos das suas correntes limiares são da ordem de algumas 
dezenas de amperes. Deste modo, o funcionamento em regime contínuo seria catastrófico para estes lasers. 

Actualmente, a configuração básica utilizada na grande maioria dos lasers semicondutores é baseada 
numa dupla heterojunção. A heterojunção é formada entre dois semicondutores distintos, apresentando bandas 
proibidas diferentes. Os materiais típicos para este efeito são GaAs e AlGaAs. Para se obter uma dupla heterojunção, 
coloca-se uma camada fina de um dado material semicondutor (por exemplo, GaAs) entre duas camadas de 
material semicondutor com uma banda proibida maior (por exemplo, AlGaAs). Na Fig. 6.9 apresenta-se uma 
representação esquemática de um laser com dupla heterojunção.

Figura 6.9 – (a) Diagrama de um laser semicondutor com dupla heterojunção, no qual a camada activa de GaAs                          
se encontra intercalada entre as regiões p e n de AlGaAs; (b) variação do índice de refracção na heterojunção e                                  

(c) distribuição da potência óptica.
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A heterojunção apresenta três vantagens importantes relativamente à homojunção. Em primeiro lugar, 
ela mantém os portadores de carga numa região limitada onde a sua recombinação se torna mais provável. Em 
segundo lugar, a região central activa apresenta um índice de refracção superior ao das camadas adjacentes 
(Fig. 6.9b), ajudando assim a confinar o campo óptico e aumentando a eficiência da emissão estimulada. Por 
fim, a absorção da luz nas regiões adjacentes à região activa é pouco significativa, de modo que as perdas são 
minimizadas. Estes três efeitos fazem com que a corrente limiar para o funcionamento do laser de heterojunção 
seja bastante inferior ao do laser de homojunção, permitindo o seu funcionamento no regime contínuo à 
temperatura ambiente.

As características de um laser de dupla heterojunção são significativamente alteradas quando a espessura 
da camada activa se torna comparável ao comprimento de onda de Broglie associado ao electrão ou à lacuna. Na 
dupla heterojunção os electrões e as lacunas estão confinados à região central, onde a separação entre bandas Eb 
é inferior à das regiões adjacentes. Ou seja, os electrões e as lacunas estão confinados a um poço de potencial, 
estando os seus níveis de energia dependentes das dimensões desse poço. Os lasers semicondutores baseados 
nestas estruturas são chamados lasers de poços quânticos e caracterizam-se por uma corrente limiar bastante 
baixa e um ganho elevado.

6.6.4. Materiais para os lasers semicondutores

A energia dos fotões emitidos por um laser semicondutor é próxima da energia correspondente à banda 
proibida, Eg . Num laser de GaAs, tem-se Eg = 1.42 eV e o comprimento de onda da luz emitida é cerca de 
904 nm. A adição de Al à camada activa permite aumentar a banda proibida e diminuir consequentemente o 
comprimento de onda da luz emitida. Deste modo, é possível construir lasers baseados nas ligas AlGaAs/GaAs 
emitindo luz na banda de 780-880 nm. Estes lasers são bastante utilizados em variadas aplicações do dia-a-dia, 
nomeadamente em leitores de CDs, impressoras laser e sistemas de comunicação funcionando na região dos 
850 nm.

A maior parte dos lasers semicondutores, actualmente existentes, são constituídos a partir de uma 
combinação de elementos do terceiro e do quinto grupos da Tabela Periódica, sendo, por isso, designados por 
lasers III-V. É o caso dos lasers baseados nas ligas ternárias AlGaAs e InGaAs ou na liga quaternária InGaAsP. 
Os lasers baseados nesta última liga são particularmente úteis no domínio das comunicações por fibras ópticas, 
dado que podem emitir luz com comprimentos de onda nas regiões de 1300 nm e 1550 nm, nas quais a atenuação 
dessas fibras é mínima. 

O composto In x-1 Ga x As y P y-1  é formado a partir do composto III-V binário InP, substituindo uma 
fracção x de átomos de In por Ga, que é outro elemento do grupo III, e uma fracção y de P por As, que é outro 
elemento do grupo V. Podem-se escolher as fracções x e y de tal modo que a banda proibida corresponda ao 
comprimento de onda pretendido. Consegue-se um acordo das redes de In x-1 Ga x As y P y-1  e de InP quando         
x ≈ 0.45y. 

Os lasers baseados na combinação de elementos do segundo e sexto grupos da Tabela Periódica, designados 
por lasers II-VI, proporcionam luz na região do azul-verde. A emissão contínua de luz azul, a 410 nm, é possível, 
por exemplo, com um laser de InGaN.
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6.6.5. Lasers semicondutores com um modo longitudinal

O facto de os lasers semicondutores apresentarem um espectro de emissão largo é indesejável na perspectiva 
dos sistemas de comunicação por fibra óptica, dado que determina uma grande dispersão dos impulsos. Para 
reduzir ao mínimo esta dispersão, o laser deverá oscilar num único modo longitudinal.

Um método eficaz para obter o funcionamento num único modo longitudinal consiste na introdução de 
componentes ou mecanismos na cavidade laser que provocam perdas para todos os modos longitudinais excepto 
para um deles. Deste modo, apenas um modo longitudinal - aquele para o qual o ganho excede as perdas - poderá 
satisfazer a condição de oscilação. Uma das técnicas que permite realizar este objectivo inclui o uso de cavidades 
externas, tendo-se então os chamados lasers de cavidade externa (LCE), como se representa na Fig. 6.10(a). 
Outra técnica para conseguir o funcionamento em modo único consiste no uso de redes de Bragg em uma ou em 
ambas as extremidades da região activa, como acontece nos lasers do tipo DBR (de “distributed Bragg reflector”), 
ilustrados na Fig. 6.10(b). Alternativamente, essas redes de Bragg podem ser aplicadas ao longo da própria região 
activa, obtendo-se então os lasers do tipo DFB (de “distributed feedback”) ilustrados na Fig. 6.10(c).

A reflexão proporcionada pelas redes de Bragg depende do comprimento de onda; as componentes 
reflectidas em cada passo da rede estão em fase se o período dessa rede, L , satisfaz a condição de Bragg

2nef  Λ = mλ							             	 (6.45)

onde nef  
 é o índice de refracção efectivo e m é um número inteiro. Uma escolha adequada do período Λ permite 

seleccionar um único modo de oscilação do laser. Assumindo nef  ≈ 3.5 e para um comprimento de onda de 1550 nm, o 
período espacial da rede deverá ser 221 nm. Redes com períodos desta ordem de grandeza são geralmente fabricadas 
usando técnicas holográficas.

No caso dos lasers DFB, a rede de Bragg é formada numa camada situada por cima da camada activa. Deste 
modo, a realimentação óptica é distribuída ao longo de todo o comprimento da cavidade, sendo as faces do laser 
geralmente revestidas com um filme anti-reflector.

Figura 6.10 - Estruturas de lasers semicondutores susceptíveis de funcionar num único modo longitudinal: (a) laser de 

cavidade externa (LCE) ; (b) laser do tipo DBR; (c) laser do tipo DFB.
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6.7. Outros lasers

Para além dos lasers semicondutores discutidos na secção anterior, existe actualmente uma grande 
variedade de lasers. Descreve-se a seguir, de modo sumário, dois outros tipos de lasers: o laser de rubi – o primeiro 
a ser desenvolvido - e o laser de Hélio-Néon. 

6.7.1. O primeiro laser - laser de rubi

Como se referiu no início deste capítulo, o primeiro laser construído foi um laser cujo meio activo era 
constituído por um pequeno cristal sintético de rubi rosa, ou seja, um cristal de Al2 O3 com cerca de 0.05% de
Cr2 O3 . O cristal apresentava faces paralelas entre si, perpendiculares ao eixo e parcialmente espelhadas (formando 
uma cavidade ressonante), encontrando-se instalado no eixo de uma lâmpada de descarga gasosa helicoidal (fonte 
de bombeamento). 

O laser de rubi constitui um exemplo de um laser com três níveis. Quando se procede à descarga na lâmpada 
de bombeamento, verifica-se a excitação de muitos iões Cr3+  para bandas de absorção. Os iões excitados decaem 
através de transições não radiativas para um par de níveis intermédios metaestáveis, onde permanecem durante 
vários milissegundos até decaírem para o estado fundamental, emitindo uma radiação fluorescente vermelha 
centrada em 694.3 nm. Os laser de rubi são hoje utilizados como fontes pulsadas de radiação coerente e de grande 
intensidade, em interferometria, análise de plasmas, holografia, etc..

6.7.2.  O laser de Hélio-Néon

Sete meses após a descoberta do laser de rubi por Maiman, Ali Javan, W. R. Bennett e D. R. Herriott 
mostraram a possibilidade de construir um laser com emissão contínua usando como meio activo um gás a baixa 
pressão, constituído por uma mistura de hélio e de néon. O laser de He-Ne é, actualmente, o laser mais popular, 
funcionando quase sempre no visível e fornecendo alguns miliwatts de potência contínua. 

Os átomos de hélio são excitados através de uma descarga eléctrica. Quando um dos átomos metaestáveis 
de hélio, que apresenta uma vida média elevada, colide com um átomo de néon no estado fundamental, existe 
uma probabilidade elevada de se verificar uma transferência de energia para este átomo, excitando-o para um dos 
níveis 3s, enquanto o átomo de hélio regressa ao estado fundamental (Fig. 6.11). A inversão de população pode 
ser conseguida relativamente às transições entre os níveis 3s e 3p (emissão a 3.39 μm), 3s e 2p (632.8 μm), 2s e 2p 
(1.15 μm).

Em contraste com o laser de rubi, o laser de Hélio-Néon proporciona uma emissão contínua de luz de 
elevada coerência. A cavidade do laser inclui, com frequência, espelhos externos e janelas de Brewster para 
eliminar perdas por reflexão. Noutras configurações, os espelhos encontram-se no interior ou constituem parte 
do próprio tubo de descarga. 
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Figura 6.11 - Níveis de energia do laser de Hélio-Néon. 

6.8. A luz laser

O processo de emissão estimulada, que é a base do funcionamento do laser, dá origem a uma multiplicidade 
de fotões com características idênticas, no que respeita à sua amplitude, fase e direcção de propagação. A luz 
laser resulta assim extraordinariamente coerente, quer em termos temporais, quer em termos espaciais, o que 
contrasta claramente com as características caóticas da luz emitida por emissão espontânea. A coerência da luz 
laser possibilita a sua focagem numa área com dimensões da ordem do comprimento de onda. A intensidade 
atingida nessa área pode ser de tal modo elevada que permite perfurar ou cortar materiais bastante duros. Os 
valores mais elevados do fluxo de potência são obtidos com lasers funcionando por impulsos ultra-curtos, cuja 
duração pode ser de apenas alguns fento-segundos.

6.8.1. O feixe laser 

 O feixe correspondente ao modo fundamental da cavidade laser (o chamado modo TEM00) caracteriza-se 
por apresentar uma intensidade cuja variação radial é descrita por uma função Gaussiana do tipo
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Na Eq. (6.46), r é a variável radial, 0I  é o valor máximo da intensidade obtido para r=0, e w é uma 
medida do raio do feixe, correspondendo à distância radial para a qual a amplitude  do campo é reduzida de 1/e 
relativamente ao seu valor máximo. Este parâmetro assume um valor mínimo, w0 , dentro da cavidade do laser, 
onde se situa a chamada cintura do feixe. O raio do feixe aumenta com a distância z relativamente a essa cintura 
(Fig. 6.12), sendo dada por:



173

Figura 6.12 - Representação esquemática da propagação de um feixe Gaussiano ao longo do eixo dos z.
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Na sua cintura, o feixe Gaussiano tem uma frente de onda plana. A uma distância z dessa cintura, o raio de 
curvatura da frente de onda é:

										          (6.48)
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Se as frentes de onda esféricas fossem concêntricas em torno de z = 0 deveria ter-se R(z) = z, o que não 
acontece na realidade. De facto, tem-se:

zzR ≈)(  								                	 (6.49)

apenas quando

l
p 2

0» wz 								                	 (6.50)

situação que corresponde ao chamado campo longínquo. Nesta região, a largura do feixe aumenta de um modo 
praticamente linear com a distância à cintura, sendo dada por:
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6.8.2. Direccionalidade 

A direccionalidade da luz laser será talvez a propriedade que mais facilmente prende a nossa atenção. 
Uma maneira simples de entender essa direccionalidade consiste em considerar os espelhos da cavidade laser 
como equivalentes a aberturas de colimação. De facto, esses espelhos apresentam, geralmente, uma reflectividade 
tão elevada que a luz gerada na cavidade laser é reflectida neles bastantes vezes, antes de ser transmitida para o 
exterior. As reflexões múltiplas aumentam a distância percorrida pela luz, a qual se mantém contudo confinada a 
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uma pequena região entre os espelhos. Devido à longa distância assim percorrida, a curvatura da frente de onda 
é bastante reduzida, pelo que a luz emitida resulta aproximadamente colimada.

O grau de direccionalidade de uma qualquer fonte de luz depende da monocromaticidade e da coerência 
da luz emitida. As fontes ordinárias não são nem monocromáticas nem coerentes.  Por outro lado, um laser 
distingue-se precisamente por essas duas características, pelo que a luz por eles emitida apresenta também um 
elevado grau de direccionalidade.

De acordo com a Eq. (6.51), a largura do feixe laser aumenta linearmente com z quando a condição (6.50) 
é satisfeita. Dado que o semi-ângulo, φ, do cone de divergência do feixe é relativamente pequeno, pode fazer-se      
tg φ ≈ φ, tendo-se então (Fig. 6.12)
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onde 00 2wD =  é o diâmetro do feixe na cintura. É de notar que a divergência do feixe é tanto maior quanto menor 
for o diâmetro na cintura. A divergência típica do feixe emitido por um laser de He-Ne é da ordem de um mili- 
-radiano, significando este valor que a dimensão do feixe aumenta de cerca de 1 mm por cada metro por ele percorrido.

O resultado dado pela Eq. (6.52) é semelhante ao obtido no capítulo 4 para o raio angular do disco de Airy 
correspondente ao padrão de difracção de Fraunhofer por uma abertura circular:

D
lθ 22.1

=
1.22 								               	 (6.53)

sendo D o diâmetro da abertura. Tanto a Eq. (6.52) como a Eq. (6.53) dependem da razão entre o comprimento de 
onda e o diâmetro, diferindo apenas no factor constante. De facto, verifica-se que a divergência do feixe gaussiano 
é aproximadamente metade da divergência de uma onda plana difractada por uma abertura circular com um 
diâmetro igual ao desse feixe na cintura.

A semelhança entre as Eq.s (6.52) e (6.53) sugere que se possa interpretar a divergência do feixe laser, traduzida 
pela Eq. (6.52), em termos de difracção. Nesta perspectiva, a cintura do feixe corresponde a uma abertura circular 
efectiva, que se situa dentro da cavidade laser e cujo diâmetro poderá ser ajustado de modo a controlar a divergência 
do feixe. Note-se, contudo, que no caso da difracção de Fraunhofer por uma abertura circular esta abertura é real 
e que a luz nela incidente é constituída por ondas planas com intensidade uniforme. No caso de um feixe laser, a 
cintura não é de facto uma abertura e as frentes de onda nessa posição, embora sendo planas, apresentam uma 
intensidade que varia com a distância ao eixo de acordo com a função Gaussiana dada pela Eq. (6.46).

O diâmetro do feixe laser na cintura relaciona-se com o comprimento da cavidade ressonante, L, e com o 
comprimento de onda, l , na forma
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6.8.3. Focagem e expansão do feixe laser

É habitual na óptica geométrica representar a focagem de um feixe colimado num simples ponto através do 
uso de uma lente convergente. Esse ponto imagem, contudo, não passa de uma idealização, devido, nomeadamente, 
às aberrações que afectam essa lente. O ideal de concentrar a luz numa mancha com um diâmetro extremamente 
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reduzido - aproximadamente igual ao comprimento de onda dessa luz - pode, no entanto, ser conseguido usando 
uma lente convergente para focar um feixe laser (Fig. 6.13).

Figura 6.13 - Focagem de um feixe laser através de uma lente convergente.

Se o diâmetro d da lente for igual ao diâmetro do feixe laser a uma distância z da sua cintura, tem-se da Eq. 
(6.51) que
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Por acção da lente, o feixe é focado e o seu diâmetro atinge um valor mínimo no plano focal, dado por
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onde F = f/d é o chamado número-F . No caso de se ter F = 1, verifica-se que o diâmetro do feixe no plano focal 
é, aproximadamente, igual ao comprimento de onda da luz. 

Como consequência da focagem do feixe laser, a intensidade no plano focal da lente adquire geralmente 
valores muito elevados. Este facto permite realizar perfurações ou cortes muito finos em materiais bastante duros 
e, em geral, realizar operações industriais ou médicas em alvos com dimensões semelhantes ao comprimento de 
onda da luz. Na área da oftalmologia, por exemplo, são usados habitualmente lasers de Nd:YAG em cirurgias 
oculares, tendo-se então intensidade na ordem de 109  a 1012 W/cm2.

O feixe laser pode ser expandido usando duas lentes convergentes, espaçadas de uma distância igual à soma 
das respectivas distâncias focais (Fig. 6.14). A primeira lente, com uma distância focal  f1 , foca o feixe colimado 
inicial, enquanto a segunda lente, com uma distância focal f2  >  f1 , volta a colimar o feixe já expandido. Neste 
processo, o diâmetro do feixe na cintura é aumentado de um factor igual à razão entre essas distâncias focais
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Simultaneamente com a expansão do feixe, obtém-se igualmente uma diminuição do seu ângulo de 

divergência, dada pela razão 
2

1

f
f .

Figura 6.14 – Expansão de um feixe laser usando duas lentes convergentes.
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6.8.4. Monocromaticidade 

Do ponto de vista do investigador laboratorial, a propriedade mais importante da luz laser será talvez a 
sua extraordinária monocromaticidade. Todavia, mesmo a luz de um laser não é absolutamente monocromática, 
constituindo apenas uma boa aproximação a esse ideal. 

O grau de monocromaticidade da luz emitida por uma dada fonte pode ser traduzido pela largura em 
comprimentos de onda, l∆ , da linha de emissão. Dependendo da fonte e do seu nível de excitação, a luz emitida 
pode corresponder a um espectro mais ou menos estreito. No caso da luz branca tem-se 300≅∆l nm, enquanto 
que para uma lâmpada de descarga ordinária se tem 1.0≅∆l nm e para uma lâmpada de cádmio de baixa 
pressão ( 8.643=l nm) se tem 001.0≅∆l nm. 

No caso de um laser, o processo de emissão estimulada restringe consideravelmente a banda de comprimentos de 
onda emitidos durante a emissão espontânea. Deste modo, a largura espectral l∆  é bastante reduzida, conduzindo a 
um elevado grau de monocromaticidade da luz emitida. Um laser de He-Ne monomodo 8.632( =l nm) apresenta uma 
largura 810 -≅∆l 10−8 nm. Ou seja, um laser de He-Ne monomodo é 10 milhões de vezes mais monocromático do que uma 
lâmpada de descarga ordinária e cem mil vezes mais monocromática do que uma lâmpada de cádmio de baixa pressão. 

6.8.5. Brilho

Outra característica importante da luz laser é o seu brilho, ou luminância. De facto, a luz laser caracteriza-
-se por uma potência radiante muito elevada, que flui no interior de um pequeno ângulo sólido sob a forma de 
um feixe com diâmetro reduzido. Uma lâmpada de incandescência, por exemplo, gera consideravelmente mais 
energia radiante que um laser contínuo de baixa potência, mas a sua emissão é incoerente, o feixe dispersa-se no 
interior de um ângulo sólido elevado e a largura de banda é significativa.

No caso de um laser de He-Ne (λ = 632.8 nm), 1 miliwatt de potência corresponde a um fluxo luminoso 
de 0.16 lm. Considerando um feixe com 1 mm de diâmetro e uma divergência de 1 mrad, a que corresponde um 
ângulo sólido de cerca de 10−6 srad, temos que o brilho (luminância) da luz desse laser é:

Lv  ≈ 2 × 107 lm/sr.cm2								       (6.58)

Atendendo a que a largura espectral da luz emitida por um laser de He-Ne multimodo é aproximadamente 
0.2 nm, a luminância espectral respectiva será Lv  (λ) = 108 lm/sr.cm2 nm. 

Por outro lado, a luminância do sol é de apenas 1.5 × 105 lm/sr.cm2. Considerando que o espectro visível da 
luz solar tem uma largura de cerca de 300 nm, a luminância espectral do sol é Lv  (λ) = 5 × 102 lm/sr.cm2 nm. Deste 
modo, conclui-se que um laser de He-Ne multimodo de apenas 1 mW de potência tem uma luminância espectral 
cinco a seis ordens de grandeza superior à luminância espectral do sol. 

6.8.6.  Coerência

A propriedade da coerência da luz pode ser entendida com base no conceito de correlação. Se a luz de uma 
dada fonte for completamente coerente, quer em termos espaciais quer em termos temporais, existirá então uma 
correlação perfeita entre as variações do campo eléctrico em dois pontos arbitrários do espaço. Tendo-se medido 
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uma vez as variações do campo eléctrico nesses dois pontos, será possível, num momento posterior, predizer, com 
absoluta certeza, o comportamento do campo num deles, medindo simplesmente o campo eléctrico no outro ponto. 

Apenas a luz monocromática pode ser completamente coerente no espaço e no tempo. Como consequência, 
é fácil de entender por que razão o grau mais elevado de coerência entre todos os tipos de fontes se verifica nos 
lasers. É essa propriedade que permite a sua utilização em áreas como a holografia e a interferometria.  

A coerência temporal de uma fonte está directamente relacionada com a largura do seu espectro de emissão, 
ν∆ . Essa coerência temporal é caracterizada pelo chamado tempo de coerência τc , durante o qual as componentes 

do espectro mantêm uma relação de fase fixa entre si, e que é dado por:
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O comprimento de coerência  lc  é a distância percorrida durante o tempo de coerência, sendo dado por:
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O comprimento de coerência de um laser de He-Ne vulgar, funcionando simultaneamente em vários 
modos, é de cerca de 50 cm. Contudo, no caso de um laser de He-Ne funcionando num modo único, a sua largura 
espectral é tipicamente de 1kHz, a que corresponde um comprimento de coerência de 300 km.

O comprimento de coerência pode ser medido usando um interferómetro de Michelson. No caso de lasers com 
largura espectral da ordem de 1 GHz, pode usar-se a configuração aberta deste interferómetro, descrita no capítulo 
3, dado que as diferenças de percursos ópticos nos seus dois braços são, nesse caso, inferiores a 30 cm. Contudo, 
para lasers com largura espectral inferior a 1 MHz a diferença de percursos ópticos resulta superior a 300 m. Nestas 
circunstâncias, torna-se mais prático usar uma fibra óptica num dos braços do interferómetro de Michelson.

6.8.7. Granitado laser

Uma consequência imediata da coerência espacial da luz laser é o aparecimento do granitado laser 
(speckle), que ocorre quando o feixe laser é reflectido por superfícies difusoras. A luz difundida preenche a região 
circundante da superfície com um padrão de interferência estacionário, que apresenta uma estrutura granitada, 
constituída por grãos brilhantes e escuros. Verifica-se que as dimensões destes grãos se tornam mais reduzidas 
quando o observador se aproxima da superfície difusora.

Em qualquer ponto do espaço, o campo difundido resulta da sobreposição de um grande número de ondas 
difundidas. As diferenças de fase entre estas ondas são determinadas pelos percursos ópticos entre cada ponto 
da superfície difusora e o ponto de observação. Pequenos movimentos da vista alteram essas diferenças de fase e 
produzem um efeito de cintilação da estrutura granitada. 

O granitado laser pode ser registado numa placa fotográfica. Um dado ponto desta placa recebe contribuições 
provenientes de toda a superfície iluminada. As fases relativas dessas múltiplas contribuições variam de modo 
significativo num ponto adjacente da placa para o qual a diferença de percursos, relativamente às extremidades 
da zona iluminada, varia de um comprimento de onda, l .

A descrição anterior permite concluir que as dimensões do granitado laser podem ser obtidas tendo por 
base a experiência de Young descrita no Capítulo 3. Assim, suponhamos que a área iluminada tem um diâmetro 
h e que a distância entre esta área e o plano de observação é D (Fig. 6.15). Considerando os dois pontos extremos 
da área iluminada, o espaçamento, d, entre as franjas no plano de observação é dado por:
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h
Dd l= 								                      (6.61a)

Deste modo, para uma dada configuração ( l = const., L = const.), tem-se hd /1∝ ; ou seja, o espaçamento 
entre as franjas aumenta quando a distância entre os dois pontos diminui. O espaçamento dado pela Eq. (6.61a) 
corresponde assim à menor dimensão possível para a estrutura do granitado laser. Atendendo a que a luz é 
difundida por toda a área iluminada e não apenas pelos dois pontos extremos considerados, a Eq. (6.61a) é apenas 
uma aproximação, tendo-se então

h
Dd l≈ 								                      (6.61b)

Figura 6.15 – Representação esquemática para a análise da dimensão do granitado laser objectivo.

O granitado laser, considerado anteriormente, é chamado granitado objectivo, dado que as suas caracte-
rísticas não estão dependentes de qualquer sistema de formação de imagem. Por contraste, chama-se granitado 
subjectivo àquele que é obtido através de um sistema de formação de imagem, como é o caso do olho humano. 

Quando se olha para uma superfície iluminada por luz laser, a cada ponto dessa superfície corresponde a 
sua imagem na retina. Contudo, a pupila do olho funciona como uma abertura circular, que difracta a luz nela 
incidente, pelo que essa imagem não é pontual. Em consequência, a um dado ponto da retina chegam contribuições 
de diferentes pontos da superfície iluminada, sendo a fase de cada uma dessas contribuições aleatória. Forma-se 
assim um padrão de interferência com o aspecto de granitado.  

A dimensão do granitado observado pela vista, dV , é dada aproximadamente por:

s
DdV l≈ 							             		  (6.62)

onde l  é o comprimento de onda da luz, D é a distância da vista à superfície difusora e s é o diâmetro da pupila. 
Esta relação pode ser facilmente comprovada pala experiência. De facto, quando se fecha ligeiramente os olhos o 
granitado torna-se maior, o mesmo se verificando quando a distância entre a superfície e o observador aumenta. 

O granitado não desaparece quando a vista é desfocada ou quando se retiram os óculos. Quando a cabeça se 
move, os caminhos ópticos desde os pontos na superfície iluminada até à retina são alterados, pelo que se observa, 
em geral, um movimento correspondente do padrão de granitado. No caso de um observador hipermétrope, 
esse padrão move-se no mesmo sentido do movimento da cabeça. Contudo, para um observador míope, esse 
movimento verifica-se em sentido oposto. Um observador com visão perfeita não observará qualquer movimento.

O efeito do granitado laser é geralmente indesejável. No caso de imagens fotográficas, por exemplo, ele 
constitui um ruído de fundo inconveniente. Contudo, para além do seu interesse pedagógico, o granitado laser 
pode ser aproveitado com utilidade no campo da interferometria.
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6.9. Problemas resolvidos 

PR 6.1. Considere que o coeficiente de Einstein para a emissão espontânea numa transição correspondente a um 
comprimento de onda λ= 600 nm é A10 = 105 / s.

a) Qual é o correspondente coeficiente de Einstein para a emissão estimulada?
b) Qual deverá ser a intensidade dentro da cavidade para que a taxa de emissão estimulada seja três vezes 

superior à taxa de emissão espontânea?

Resolução
a) O  coeficiente de Einstein para a emissão estimulada obtém-se a partir do coeficiente de Einstein para a 

emissão espontânea usando a Eq. (6.19), que pode ser reescria na forma:

10

3

10 8
A

h
B

p
l

=B10 A10 						            		        (1)

Substituindo os valores para os parâmetros, tem-se 

B10 = 1.3 × 1018 J−1m3s−2 .							            (2)

b) Usando as Eq.s (6.2), (6.4) e (6.15), tem-se que taxa de emissão estimulada será três vezes superior à taxa 
de emissão espontânea se

1010 3A
c
IB =B10 A10

								             (3)

Substituindo os valores de B10 , A10 e c, obtém-se

I = 6.9 × 10−5 Wm−2Hz−1.							            (4)

PR 6.2. Considere um sistema atómico em que o estado fundamental tem energia  E0  e o primeiro estado excitado 
tem energia  E1 . A diferença entre essas energias corresponde a um fotão com comprimento de onda 600=l nm.

a) Determine a razão 
0

1

N
N  entre as populações dos dois níveis para uma temperatura T = 300 K.

b) Para que temperatura se tem 
2
1

0

1 =
N
N  ? Que conclusão pode tirar?

Resolução
a) Tem-se

	
l

ν chhEE ==- 01

		          19
9

834
1031.3

10600
10310626.6 -

-

-

×≈
×

×××
=

  6.626 × 10−34 × 3 × 108

   600 × 10−9
   ≈ 3.31 × 10−19 J 			         (1)
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Para uma temperatura T = 300 K,

kBT = 1.38 × 10−23 × 300 ≈ 4.14 × 10−21  J 					          (2)

Deste modo, tem-se 

358001

0

1 10exp -- ≈=






 -
-= e

Tk
EE

N
N

B

≈ 10−35 						           (3)

Pode-se concluir deste resultado que será bastante improvável encontrar, à temperatura de 300 K, um 
átomo no estado excitado.

b)  Fazendo 
2
1

0

1 =
N
N  na Eq. (6.6) e calculando o logaritmo de ambos os membros, tem-se

34600
)2)(ln1038.1(

1031.3
)2(ln 23

19
01 =

×
×

=
-

= -

-

Bk
EET 3.31 × 10−19

 (1.38 × 10−23 )(ln 2)
K					          (4)

Este valor é muito superior à temperatura na superfície do sol. Torna-se claro que, para se conseguir a 
inversão da população destes dois níveis, o aumento da temperatura não é a solução, devendo-se usar alguma 
forma de bombeamento de energia.

PR 6.3. Mostre que a evolução da intensidade de um feixe constituído por radiação perfeitamente monocromática 
num meio activo é dada por pelas Eq.s (6.16) e (6.17).

Resolução
O número de fotões,  pij 

, ganhos em cada segundo pelo feixe ao passar pelo meio activo pode-se escrever à 
custa da intensidade nas posições  z  e  z+Δz, na forma:

[ ]
ij

ij

h
AzIzzI

dt
dp

ν
)()( -∆+=

dpij

 dt  hvij

			

    
ijh

Az
dz

zdI
ν

∆=
)( dI(z)

 dz  hvij

				                              		       (1)

onde A é a área da secção do feixe e se assumiu na última igualdade que Δz era suficientemente pequeno. Por outro lado, 
a taxa de variação do número de fotões pode ser escrita em termos das taxas de emissão e de absorção estimuladas:

ijijij
ij B

c
zINB

c
zIN

dt
dp )()(

-=
dpij

 dt  Bij  Bij

 	 	 	          					        		       (2)
 	     

c
zINNB ijij
)()( -= Bij 

onde na última igualdade se usou a Eq. (6.11) e Ni e Nj são o número de átomos nos estados de energia inferior e 
superior, respectivamente, no elemento de volume considerado. 
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A partir das Eq.s (1) e (2) pode-se escrever:

zA
h

c
zINNB

dz
zdI ij

ijij ∆
-=

ν)()()(dI
 dz

Bij

 hvij

 ∆zA
	

										               
(3)

            
)()( zI

c
h

nnB ij
ijij

ν
-= Bij

 hvij

	           			                     

onde zANn ii ∆= /  e zANn jj ∆= /  representam o número de átomos por unidade de volume, ou densidade de 
população, dos dois estados de energia.

Integrando a Eq. (3), obtém-se

)exp()0()( zIzI β= 					           			        (4)

onde

c
h

nnB ij
ijij

ν
β )( -= Bij

 hvij 							             (5)

é o coeficiente de ganho. Este coeficiente será positivo se  jn > in , ou seja, se se verificar a inversão da população. 
Usando a Eq. (6.10), pode-se escrever a Eq. (5) na forma

 
2

2

8
)(

ij

ij
ij

Ac
nn

pν
β -=

 Aij
             2 8πvij

					                		       (6)

PR 6.4. Um laser de Hélio-Néon emitindo a 632.8 nm tem uma cavidade ressonante formada por dois espelho 
planos espaçados de 0.5 m. Determine o número de modos longitudinais que contribuem para a emissão do laser, 
sabendo que a largura espectral da linha de emissão espontânea do Ne a 632.8 nm é de 0.0016 nm.

Resolução
De acordo com a Eq. (6.26), a separação em frequência entre modos longitudinais sucessivos do laser é

d
c

2
=∆ν  

      
                    8

8
103

)5.0(2
103

×=
×

=
108

108 Hz						                            (1)

Por outro lado, a largura espectral no domínio das frequências da linha do Ne a 632.8 nm é

2'
l
lν ∆

=∆ c  

   8
29

12
8 1012

)108.632(
106.1103 ×=
×

×
×= -

-

108 10−8

10−9
12 × 10−8  Hz					           (2)
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Deste modo, tem-se:

4'modNº =
∆
∆

=
ν
νosNº modos 							            (3)

pelo que o laser funcionará com quatro modos longitudinais.

PR 6.5. Obtenha a matriz 







DC
BA

 para o sistema unitário correspondente a uma volta na cavidade ressonante repre-
sentada na figura 6.5.

Resolução
A matriz do sistema unitário correspondente a uma volta na cavidade ressonante representada na figura 

6.5 é dada pelo produto de quatro matrizes: uma matriz de transferência (distância d) entre o espelho 1 e o 
espelho 2, uma matriz de reflexão no espelho 2 (raio R2 ), uma matriz de transferência (distância d) entre o espelho 
2 e o espelho 1 e uma matriz de reflexão no espelho 1 (raio R1 ). Deste modo, tem-se

	 































=








10

1
1/2
01

10
1

1/2
01

21

d
R

d
RDC

BA 		       		       (1)

Multiplicando as matrizes no membro direito da Eq. (1), obtém-se os seguintes resultados para os elementos 
da matriz do sistema:

2

21
R
dA += 								                           (2a)

2

222
R
ddB += 								           (2b)

2121

422
RR
d

RR
C ++= 							          (2c)

1424

21

2

21
+++=

RR
d

R
d

R
dD 							         (2d)

PR 6.6. Mostre que a condição de estabilidade para a cavidade ressonante da Fig. 6.5 é dada pela Eq. (6.27).

Resolução

Se  xp 
 e  γp  representarem a altura e a inclinação do raio, respectivamente, após p voltas na cavidade, os 

respectivos valores após p+1 voltas são dados pela seguinte relação matricial:

















=









+

+

p

p

p

p x
DC
BAx

γγ 1

1 					                                   	       (1)
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onde  







DC
BA  é  a matriz unitária obtida no problema PR 6.5. Pode-se verificar que  

1=-= BCAD
DC
BA

AD − BC = 1  							            (2)

Nestas circunstâncias, como se viu no Capítulo 2, a solução da Eq. (1) é dada, na forma:

( )0max sen ϕϕ += pxxp ,					         		       (3)

onde

q1cos-=ϕ ,     						          		       (4)

2
DAq +

= 			                            	  			                         (5)

Usando as Eqs (2a) e (2d) do problema PR 6.5, tem-se que

1112
21

-







+








+=

R
d

R
dq 							            (6)

A solução dada pela Eq. (3) é válida se ϕ  for real, o que acontece se 

11 ≤≤- q . 								                             (7)

Introduzindo os parâmetros 

1
1 1

R
dg +=     e      

2
2 1

R
dg += 	 	 	      			        (8)

a Eq. (7) pode ser apresentada na forma:

10 1 ≤≤ gg 						           			        (9)

que corresponde à condição de estabilidade da cavidade ressonante.

PR 6.7. Obtenha uma expressão para o espaçamento em frequência, ν∆ , entre os modos longitudinais adjacentes 

de um laser semicondutor, tendo em consideração a dependência do seu índice de refracção, n, com a frequência, 
v. Calcule esse espaçamento para o caso de um laser semicondutor de comprimento l = 300 mm e índice de 

refracção n = 3.6, cuja variação com a frequência é tal que 4.0≈
ν

ν
d
dn

n
dn .

Resolução
As frequências correspondentes aos modos longitudinais de oscilação de um laser semicondutor são dadas 

pela condição de ressonância da cavidade, indicada na Eq. (6.25):

	 p
ln

c
)(2 ν

ν = ,		  p = 1, 2, 3, ...			     		        (1)

onde l é o comprimento da cavidade e )(νn  é o índice de refracção do material semicondutor. 
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O espaçamento ν∆  entre frequências de oscilação adjacentes pode ser obtido da Eq. (1) na forma:

lvn
cp

lvvn
cppp )(2)(2

)1(1 -
∆+

+=-=∆ + ννν 				         (2)

Pode-se usar uma expansão do índice de refracção na forma:

ν
ν

ννν ∆+=∆+
d
dnnn )()( dn 							            (3)

obtendo-se então o resultado		

1

1
2

-







 +=∆

ν
νν

d
dn

nnl
c dn
nl

					                       	      (4)

Se se considerar os valores n = 3.6,  l = 300 mm e 4.0≈
ν

ν
d
dn

n
dn , tem-se

100≈∆ν  GHz								             (5)

PR 6.8. Considere um laser de Hélio-Néon emitindo luz com comprimento de onda 8.632=l nm. Considerando 
que o nível 2p do átomo de néon tem uma energia de 15.2 × 10−19 J, determine a energia de bombeamento que 
será necessário usar. 

Resolução
A energia de bombeamento deve ser pelo menos igual à diferença de energias entre o nível fundamental e 

o estado metaestável 3s, 0,3sE∆ . Esta diferença de energias é dada por:

psps EEE 2,30,20,3 ∆+∆=∆ 							             (1)

onde 0,2 pE∆  é a energia do nível 2p relativamente ao nível fundamental e psE 2,3∆  é a diferença entre as energias 
dos níveis 3s e 2p, dada por:

l
ν hchEEE psps ==-=∆ 232,3

hc  						           (2)

Substituindo os valores dados, tem-se:

19
9

834

2,3 1012.3
108.32.6

)103)(106.6( -
-

-

×=
×

××
=∆ psE  (6.6 × 10−34)(3 × 108)

 6.32.8 × 10−9
 3.12 × 10−19  J					          (3)

Portanto, a energia de bombeamento que será necessário usar é:

psps EEE 2,30,20,3 ∆+∆=∆  

             = 15.2 × 10−19 + 3.12 × 10−19  = 18.32 × 10−19  J				         (4)

PR 6.9. Calcule o ganho limiar, limβ , e o tempo de vida dos fotões, fτ , num laser semicondutor com comprimento 
300=l mm, índice de refracção n = 3.5, faces com reflectâncias R1 = R2 = 0.30 e atenuação αp = 10 cm−1.
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Resolução
Na situação limiar, o coeficiente de ganho é igual à soma das perdas por absorção no material  com as 

perdas correspondentes à emissão de luz para o exterior. Considerando que 2
jj rR = , j = 1, 2 e usando as Eq.s 

(6.21) e (6.22) e tem-se:

501ln
2
1

21
lim =








+=

RRlpαβ ln 50 cm 1- 						            (1)

O tempo de vida dos fotões corresponde ao tempo médio que um fotão demora dentro da cavidade do laser 
antes de ser absorvido ou de ser emitido para o exterior. Usando a Eq. (6.44), tem-se:

3.2
)105)(103(

5.3
38

lim
=

××
==

β
τ

c
n

f (3 × 108)(5 × 103)
 ps					                           (2)

PR 6.10. 
a) Represente esquematicamente as transições dominantes para o caso de um sistema de quatro níveis, 

análogo ao representado na Fig. 6.4. Considere as transições devidas à emissão espontânea apenas entre níveis vi-
zinhos e assuma uma taxa de bombeamento constante, R, do nível fundamental para o nível de energia mais elevado. 

b) Escreva as equações de taxas para a população de cada nível de energia;
c) Assumindo a situação estacionária, obtenha o resultado dado pela Eq. (6.29) para a diferença de 

populações entre os níveis  N1  e  N2 .

Resolução
a) A fig. 6.16 ilustra as transições dominantes entre os quatro níveis de energia do sistema laser, considerando 

a taxa de bombeamento, R, entre o nível fundamental e o nível 3, as taxas da emissão espontânea entre níveis 
adjacentes, definidas pela Eq. (6.2), assim como a taxa da absorção estimulada do nível 1 para o nível 2, dada pela 
Eq. (6.3), e a taxa da emissão estimulada do nível e para o nível 1, dada pela Eq. (6.4).

Figura 6.16 - Esquema representando os processos de transição dominantes num sistema de quatro níveis.

b) Considerando as transições indicadas na Fig. 6.16, as taxas de variação das populações, em cada um dos 
quatro níveis, são dadas pelas seguintes equações diferenciais:



186

323
3 ANR

dt
dN
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 dN3

dt  A32

								             (1)

212212211323
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c
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c
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			         		       (2)
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c
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			         		       (3)

RAN
dt

dN
-= 101

0 dN0

dt
A10

						            		       (4)

onde A32 ,  A21 ,  A10  e  B21 são os coeficientes de Einstein para as transições entre os níveis 0, 1, 2 e 3. 

c) No estado estacionário, tem-se 

00123 ====
dt

dN
dt

dN
dt

dN
dt

dN dN3  dN2  dN1  dN0

dt         dt        dt        dt . 					        	      (5)

Da Eq. (1) tira-se que N3 A32 = R. Substituindo este resultado, somando e subtraindo N1 A21 na Eq. (2), tem-se

2112112122122110 ANANAN
c
IBN

c
IBNR -+--+= B21

B21 A21 A21
A21

				         (6)

A Eq. (6) pode ser reescrita na forma

21121122112 )()( ANANN
c
IBNNR +-+-= B21 A21 A21

					          (7)

Colocando (N2 − N1) em evidência e substituindo N1 = R/A10 no último termo, obtém-se o resultado:
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A10 A21 B21

						           (8)

PR 6.11. Quando um laser semicondutor é modulado através da corrente injectada, o índice de refracção da cavidade 

varia. Supondo que a variação relativa do índice de refracção é 610 -=
∆
n
n  10−6 , calcule a variação correspondente 

do comprimento de onda e da frequência. Considere que o laser emite luz com um comprimento de onda

λ = 1.55 mm.

Resolução
Da Eq. (6.25) tem-se:

p
nl
cc

2
==

l
ν

nl 								              (1)
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A variação do comprimento de onda, l∆ , correspondente à variação n∆  do índice de refracção é então

n
n∆

=∆ ll  										        

   = (1.55 × 10−6 )(10−6 ) = 1.55 × 10−12 nm  					          (2)

A variação correspondente da frequência é:

l
l

ν ∆=∆ 2
c

   
( )

( ) 5.1931055.1
1055.1

103 12
26

8
=×

×

×
= -

-

10−8
1.55 × 10−12

1.55 × 10−6

 MHz					          (3)

PR 6.12. Obtenha o semi-ângulo de divergência para 
a) um feixe emitido por um laser de He-Ne ( 8.632=l nm) com uma cavidade de comprimento L = 30 cm; 
b) um feixe laser com um comprimento de onda de 300 nm e uma cintura de diâmetro  D0  = 1 cm. 

Resolução
a) Usando a Eq. (6.54), tem-se:

35.0
14.3

)3.0)(108.632)(2(
2/19

0 =






 ×
=

-

D
 (2)(632.8 × 10−9)(0.3)

3.14
 0.35  mm. 					           (1)

O semi-ângulo de divergência, dado pela Eq. (6.52), é neste caso: 

2.1
105.3

)108.632)(64.0(
4

9
≈

×
×

= -

-

φ   (0.64)(632.8 × 10−9)
3.5 × 10−4

 
mrad. 						           (2)

Este valor corresponde à divergência típica de um feixe laser.

b) Neste caso, tem-se:

5
2

9
1092.1

101
)10300)(64.0( -

-

-

×≈
×

×
=φ

 (0.64)(300 × 10−9)

1 × 10−2
  1.92 × 10−5  rad					          (3)

Verifica-se que a divergência do feixe é, neste caso, reduzida 63 vezes relativamente à situação da alínea a).

PR 6.13. Considere o feixe de um laser de He-Ne com uma potência de 1 mW focado por uma lente convergente 
com F = 1. Calcule o diâmetro da mancha luminosa no plano focal da lente e a respectiva intensidade.

Resolução
Usando a Eq. (6.56), tem-se que o diâmetro do feixe no plano focal da lente é dado por:

806)1(
14.3

)108.632)(4(2
9

=
×

=
-

fw
 (4)(632.8 × 10−9)

 3.14
 nm. 						            (1)
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Assumindo-se uma distribuição uniforme da potência, tem-se que a intensidade no plano focal da lente é dada por

9
2 102×≈=
fw

PI
p

 2 × 109  W/m 2 .  							            (2)

PR 6.14. Um laser de He-Cd emite um feixe de luz com um raio de 1 mm e contendo os comprimentos de onda 
325 nm e 488 nm. Supondo que a luz se propaga no espaço livre, a que distância do laser a diferença entre os raios 
das duas componentes do feixe é de 2 cm?

Resolução
O raio do feixe a uma distâcia z do laser é dado a partir da Eq. (6.52) por:

0
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w
zzw

p
l

= 				            				          (1)

A diferença entre os raios das duas componentes do feixe é dada por

( )12
0

12 ll
p

-=-
w
zww 							            (2)

A distância para a qual a diferença entre os dois raios é 2 cm é:
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wwwz
ll

p 3.14 × 10−3

 (4.88 − 3.25) × 10−7  2 × 10−2 = 385 m			        (3)

6.10. Problemas propostos

PP 6.1. Considere a equação   110
1 NA

dt
dN

-=
dN1

 dt
A10 N1 	para o decaimento da população do nível de energia E1 devido à 

emissão espontânea. Mostre que uma população inicial N10 decresce para um valor N10 / e  ao fim de um tempo       

τ = l/ A10 .  A constante τ  é conhecida por tempo de vida da emissão espontânea.

PP 6.2. Explique por que razão será mais difícil realizar um laser que emita luz com um comprimento de onda 
na região do ultravioleta do que na região do infravermelho. Assente a sua explicação na razão A10 / B10  e no 
significado dos coeficientes A10  e B10 .

PP 6.3. Considerando um sistema em equilíbrio térmico e um comprimento de onda λ = 10 mm, determine a 
temperatura para a qual as taxas de emissão espontânea e de emissão estimulada são iguais.
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PP 6.4. Dados dois espelhos com raios de curvatura R1 = −100 cm e R2 = −200 cm, determine para que valores da 
separação entre eles a configuração é i) estável, ii) instável e iii) condicionalmente estável.

PP 6.5. Assumindo que o comprimento de onda central de um laser de He-Ne é λ = 632.8 nm, qual é a frequência 
correspondente? Se a separação entre os espelhos da cavidade for 50 cm, qual o valor do número inteiro q 
correspondente ao modo mais próximo do centro da linha? Se a largura da curva de ganho do laser de He-Ne for 
1 GHz, qual o número de modos longitudinais para esta cavidade?

PP 6.6. Obtenha o resultado dado pela Eq. (6.33) para a intensidade dentro da cavidade laser acima do limiar.

PP 6.7. As extremidades de um cristal de rubi (n = 1.76) são cortadas e polidas de modo a constituírem os espelhos 
de um laser, que emite luz com um comprimento de onda λ = 694.3 nm. Considerando que o cristal tem um 
comprimento de 12 cm e um diâmetro de 6 mm, discuta a importância da difracção no cômputo das perdas de 
energia na cavidade desse laser.

PP 6.8. Uma corrente de 40 mA é injectada num LED de GaAsP emitindo luz com comprimento de onda λ = 500 nm. 
Supondo que a eficiência quântica interna do GaAsP é 0.1, determine a potência gerada pelo LED.

PP 6.9. Um laser de InGaAsP (n = 3.5), com comprimento  l = 400 mm, tem uma largura espectral de 1.2 THz. 
Supondo desprezável a variação do índice de refracção com a frequência, determine o espaçamento entre os 
modos longitudinais e o número desses modos em que o laser pode oscilar. Qual o comprimento máximo do laser 
que poderá garantir o seu funcionamento num único modo?

PP 6.10. O composto quaternário In x-1 Ga x As y P y-1  apresenta um acordo de rede com o composto binário InP 
quando x = 0.45 y. A banda de energia proibida do composto InGaAsP é dada por:

Eg (y) = 1.35 − 0.72y + 0.12 y2 eV

Determine a composição da camada activa de um laser semicondutor de InGaAsP projectado para emitir 
luz com um comprimento de onda λ = 1550 nm.

PP 6.11. O feixe emitido por um laser é gaussiano, ou seja, a amplitude do campo varia numa dada secção transversal 

com a coordenada radial r na forma { }22 /exp wrAE -= , onde A é uma constante e w é o raio do feixe.

a) Obtenha, em função de w, o raio r0  do disco, no interior do qual a intensidade é superior a metade do 
seu valor máximo.

b) Verifica-se que o feixe é difractado durante a sua propagação. Obtenha a distribuição da intensida-                
de correspondente à difracção de Fraunhofer do feixe. Determine o ângulo de difracção 0θ  correspondente ao 
disco no interior do qual a intensidade é superior a metade do seu valor máximo. Assuma os valores λ = 632.8 nm  
e w = 0.5 mm.

PP 6.12. O feixe emitido por laser de rubi (λ = 694.3 nm) é dirigido para um alvo situado à distância de 5000 km. 
Supondo que o feixe tem um diâmetro de 1 cm à saída do laser, que valor terá esse diâmetro na posição do alvo?
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PP 6.13. Compare o comprimento de coerência das seguintes fontes: 
a) uma lâmpada de filamento emitindo luz branca numa banda de comprimentos de onda 400-700 nm; 
b) um laser de He-Ne com uma cavidade de 40 cm oscilando com três modos longitudinais; 
c) Um laser estabilizado de Nd-YAG funcionando num único modo longitudinal, com largura espectral       

∆v = 30 kHz.

PP 6.14. Considere uma superfície plana elementar, com diâmetro h, iluminada uniformemente pela luz emitida 
por um laser de He-Ne (λ = 632.8 nm). O padrão formado pelo granitado laser num ecrã situado a 1 m da superfície 
difusora é observado a uma distância de 25 cm desse ecrã. Determine para que valor do diâmetro da superfície 
difusora a estrutura mais fina do granitado laser deixa de poder ser observada. Considere que a resolução mínima 
da vista é de 47 segundos de arco.
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Capítulo 7

HOLOGRAFIA

A holografia foi inventada pelo cientista britânico Dennis Gabor em 1948, quando procurava melhorar a 
qualidade da imagem proporcionada pelo microscópio electrónico. Quanto à palavra holografia, ela tem a sua 
raiz no termo grego holos, que significa totalidade. De facto, enquanto que na fotografia tradicional apenas a 
intensidade da luz é registada, na holografia tanto a amplitude como a fase da onda proveniente do objecto 
são registadas, após a sua interferência com uma dada onda de referência. Para este efeito, torna-se necessário 
usar luz coerente, de modo a existir uma relação de fase fixa entre essas duas ondas. No sentido de reconstruir a 
imagem tridimensional do objecto, Gabor sugeriu que bastaria iluminar o holograma com uma  onda semelhante 
à onda de referência usada durante o registo.

Na realidade, a ideia da holografia acabou por não se mostrar útil no âmbito da microscopia electrónica, 
tendo permanecido praticamente ignorada até à descoberta do laser, em 1960. O interesse das comunidades 
científica e artística por esta ideia aumentou significativamente com o desenvolvimento da técnica de registo fora 
do eixo, proposta por Emmett Leith e Juris Upatnieks em 1962. 

7.1. Fotografia versus Holografia

Uma fotografia convencional regista apenas a variação de intensidade correspondente a um objecto ou 
a uma cena. Dado tratar-se de um registo bidimensional, ela não proporciona nenhuma informação acerca da 
profundidade da cena. Quando se olha para uma fotografia parece, por vezes, que se tem uma percepção dessa 
profundidade. Contudo, isto acontece geralmente apenas porque a cena nos é já familiar. 

Por contraste com a fotografia convencional, o holograma permite registar a cena com a sensação de 
profundidade e a paralaxe com que a podemos observar na realidade. Isto é possível porque toda a informação da 
frente de onda, nomeadamente a sua amplitude e a sua fase, é registada. Quando um holograma é iluminado nas 
condições adequadas, essa frente de onda é completamente reconstruída e o observador pode contemplar a cena 
original através da “janela” definida pelo holograma. 

As características da imagem proporcionada por um holograma devem-se, sobretudo, à preservação da 
informação relativa à fase da frente de onda, para além da sua amplitude. O registo dessa informação é importante, 
dado que as fases das ondas originadas em pontos distintos de um objecto são também diferentes. Para registar essas 
variações de fase torna-se necessário convertê-las em variações de amplitude, o que pode ser conseguido através da 
interferência de duas ondas: a onda proveniente do objecto e uma outra onda coerente, dita de referência.
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7.2. O processo holográfico

Figura 7.1 - Montagem experimental típica para o registo de um holograma. E1 , E2  e  E3 : espelhos;  DF: divisor de feixe.

Na Fig. 7.1 mostra-se uma montagem típica utilizada para o registo de um holograma. O feixe laser inicial é 
dividido em dois feixes mutuamente coerentes. Um deles dirige-se directamente para a placa de registo e constitui 
a chamada onda de referência. O outro feixe ilumina o objecto em causa e a luz por ele reflectida constitui a onda 

objecto. As ondas objecto e de referência interferem na placa holográfica, na qual existe um meio sensível à luz que 
regista a distribuição espacial de intensidade do padrão de interferência. 

Num momento posterior, a placa holográfica pode ser iluminada por uma réplica da onda de referência, 
designada por onda de reconstrução. O padrão de interferência registado na placa difracta essa onda de 
reconstrução, permitindo reobter a onda objecto.

Analisa-se a seguir com mais detalhe os aspectos principais do processo holográfico, nomeadamente os que 
se referem às fases de registo e de reconstrução da imagem holográfica.

7.2.1. Registo holográfico

Considere-se o registo holográfico de um objecto, realizado numa placa fotográfica que se situa no plano xy. 
A onda objecto apresenta nesse plano uma amplitude complexa ),( yxEO . Se apenas existisse esta onda, o filme 
seria escurecido em função da sua intensidade, dada por:

	 *2
OOOO EEEI == 						                         (7.1)

Neste caso, o registo não conteria nenhuma informação relativa à fase da onda objecto. Contudo, na 
presença igualmente de uma onda de referência com uma amplitude complexa ),( yxER , o campo eléctrico 
resultante no ponto (x,y) da placa fotográfica é dado por:
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),(),(),( yxEyxEyxE RO += , 					                        (7.2)

Deste modo, a intensidade registada é dada por:

****2),(),(),( OROROORRRO EEEEEEEEyxEyxEyxI +++=+= 	         	                    (7.3)

O padrão de distribuição da intensidade, dado pela Eq. (7.3), pode ser registado usando diferentes métodos. 
Considera-se a seguir o caso em que o meio de registo é um filme fotográfico, cujas características são dadas pela 
chamada curva de Hurter-Driffield (H&D) (Fig. 7.2). Esta curva mostra a variação da densidade da emulsão 
depois do registo, D, com o logaritmo da exposição B (energia/área), dada por:

B = ItB					      				       (7.4)

onde  tB é o tempo de exposição. A densidade óptica da emulsão depois do registo é definida na forma:

2
1log

τ
=D 								                          (7.5)

onde τ  representa o coeficiente de transmissão em amplitude da emulsão.

Figura 7.2 - Aspecto típico da curva H&D.

No caso do registo fotográfico convencional, e para que esse registo seja linear em termos da intensidade, 
procura-se controlar o tempo de exposição de modo a operar-se na região linear da curva H&D. Neste regime, 
tem-se a relação:

D = γN log B–D0 = γN log (ItB) – D0						        (7.6)

onde γN  é o chamado gama do filme, dado pelo declive da parte linear da curva H&D. O índice N neste parâmetro 
indica o facto deste registo corresponder ao negativo do sinal original. Iluminando esse negativo com uma onda 
de reconstrução com intensidade  IR , tem-se que a intensidade transmitida é dada por:

It = IRτ2 = IR10 –D							                           (7.7)

Substituindo a Eq. (7.6) na Eq. (7.7) obtém-se:

NIICI RNt
γ-= 						                        	  (7.8a)

onde

CN = 10D0 t 
–γ

N 						              	                  (7.8b) 	                B	
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Como se verifica da Eq. (7.8), a intensidade transmitida não é uma reprodução linear da intensidade 
original I. Contudo, como se faz habitualmente em fotografia, pode-se obter a partir desse negativo um registo 
positivo do sinal original. Iluminando essa cópia positiva com uma onda de reconstrução ER (x, y), tem-se que a 
intensidade transmitida é dada por:

ItP	= CP IR I 
γPγN						                          	   (7.9)

onde γP é o gama associado com o registo da cópia positiva. Verifica-se da Eq. (7.9) que a relação entre as 
intensidades transmitida e registada é linear se se verificar a condição γN γP = 1. 

Em holografia, o processo de registo deve ser tal que o holograma proporcione uma onda transmitida 
cuja amplitude corresponda a uma reprodução linear do padrão de interferência criado pelas ondas objecto e de 
referência. A partir da Eq. (7.9) verifica-se que, neste caso, se deverá ter 

γN γP = 2 								                         (7.10)

A exposição correcta para um registo holográfico linear corresponde a um funcionamento, não na região 
linear da curva H&D, mas antes na região linear da curva de τ  vs B, representada na Fig. 7.3. Nessa zona, tem-se:

τ = τ0 + βB = τ0 + βItB					           		   (7.11)

onde 0τ  e β  são constantes.

Figura 7.3 - Coeficiente de transmissão em amplitude de uma placa holográfica  em função da energia de exposição B.

7.2.2. Reconstrução e localização da imagem

Iluminando o holograma com uma onda igual à onda de referência (agora chamada onda de reconstrução), 
pode-se obter uma réplica da onda objecto original. O campo correspondente à luz transmitida pelo holograma 
é dado por:

Rt EyxyxE ),(),( τ=

)( ****
0 ORROOORRRBR EEEEEEEEEtE ++++= βτ     		        		  (7.12)

onde se usou as Eq.s (7.11) e (7.3). 

Os três primeiros termos resultantes do membro direito da Eq. (7.12) correspondem a uma versão modulada 
em amplitude da onda de reconstrução. Considerando o holograma como uma rede de difracção, estes termos 
representam o feixe luminoso não deflectido, isto é, a ordem zero, enquanto que o quarto e quinto termos na              
Eq. (7.12) representam as ondas difractadas de primeira ordem. O quarto termo proporciona uma imagem directa 



195

(virtual) do objecto original, localizada atrás do holograma. O quinto termo corresponde a uma imagem conjugada 
(real) do mesmo objecto, situada à frente do holograma. A Fig. 7.4 mostra a localização das imagens quando a 
direcção de propagação das ondas de referência e de reconstrução é perpendicular ao holograma o holograma. 

Figura 7.4 - Localização das imagens quando a direcção de propagação das ondas 
          de referência e de reconstrução é perpendicular ao holograma.

Atendendo às suas características, a imagem conjugada é geralmente de utilidade reduzida. De facto, esta 
imagem mostra o objecto de dentro para fora, sendo a profundidade da cena invertida ao longo do eixo de visão. 
Os pontos do objecto mais próximos do observador revelam-se mais afastados na imagem real.

O quarto termo no membro direito da Eq. (7.12) reproduz, a menos de um factor constante, a onda 
objecto EO . Olhando através do holograma como se fosse uma janela, pode-se ver uma imagem tridimensional 
da cena, com os objectos situados exactamente nas suas posições originais. Os efeitos de paralaxe são facilmente 
observados, podendo-se ver aspectos diferentes da cena movendo um pouco a cabeça.

De modo a obter-se a onda objecto,  EO , em boas condições, deve-se procurar evitar a sua interferência com 
as outras ondas. Este objectivo pode ser facilmente conseguido desde que as ondas objecto e de referência façam 
entre si um ângulo conveniente, como se mostra no problema PR 7.5.

7.3. Hologramas de fase

No caso mais geral, o coeficiente de transmissão da placa holográfica é uma função complexa e pode 
escrever-se na forma:

[ ]),(exp),(),(~ yxiyxyx ϕττ = 					                                      (7.13)

Podem-se considerar dois casos limites no registo de um holograma: o holograma de amplitude (φ = const.) e 
o holograma de fase (τ  = const). Em ambos os casos toda a informação contida na onda objecto é registada na placa 
holográfica.

Figura 7.5 - Fase do coeficiente de transmissão de uma placa holográfica em função da energia de exposição B.
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A fase do coeficiente de transmissão de uma placa holográfica varia com a exposição B como se representa 
na Fig. 7.5. Na zona linear dessa curva pode escrever-se:

φ(I) = φ0 + β' ItB							             	 (7.14)

Quando  φ(I)«π / 2 o coeficiente de transmissão do holograma de fase pode ser aproximado por uma função 
linear da intensidade I:

[ ] )(1)(exp~ IiIit ϕϕ +≈=

= (1 + iφ0) + iβ' ItB 			                     	       	 (7.15)

Quando a imagem é reconstituída a partir de um holograma de fase obtém-se:

Et (x, y) ≈ (1 + iφ(I (x, y)) ER       

		  ****
0 (')1( ORROOORRRBR EEEEEEEEEtiEi +++++= βϕ           	    	 (7.16)

Como acontece na Eq. (7.11) para o caso do holograma de amplitude, também aqui se tem cinco termos. 
Contudo, em consequência da aproximação adicional ϕϕ ii +≈1)exp( , verifica-se que os efeitos não-lineares são 
mais acentuados nos hologramas de fase do que nos hologramas de amplitude.

7.4. Configurações holográficas

Uma condição essencial para a realização de um holograma é a existência de uma fonte de luz monocromática 
e suficientemente coerente. As ondas objecto e de referência devem ser mutuamente coerentes para que a sua 
sobreposição resulte num padrão de interferência estável. Nesse sentido, a geometria da montagem deve ser tal 
que os percursos das duas ondas sejam semelhantes. De facto, se a diferença entre esses percursos for superior ao 
comprimento de coerência da luz, não chegará a formar-se o padrão de interferência desejado no filme fotográfico. 
Estas limitações podem ser ultrapassadas com relativa facilidade quando a fonte de luz é um laser.

7.4.1. Holografia em linha 

O método mais simples de realizar um holograma consiste em iluminar uma placa holográfica com um 
feixe laser expandido através do objecto, o qual deve ser suficientemente transparente para o efeito (Fig. 7.6). Este 
método foi introduzido por Gabor e é pouco exigente no que se refere à coerência da luz utilizada. A onda objecto 
é formada pela luz dispersa pelas partículas do objecto, enquanto que a onda de referência é constituída pela luz 
que passa entre essas partículas sem ser afectada.

No caso de um objecto com dimensões muito reduzidas, a onda difundida é praticamente esférica e o padrão 
de interferência na placa fotográfica é constituído por uma série de franjas circulares concêntricas. Esta distribuição 
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de intensidade é semelhante à que se obtém no caso de uma placa zonada de Fresnel. Como se viu no capítulo 4, uma 
placa zonada de Fresnel funciona como uma lente. Pode considerar-se que cada ponto de um objecto extenso dá 
origem a uma placa zonada de Fresnel e que o holograma corresponde à sobreposição de todas essas placas zonadas.

  Holograma

Figura 7.6 - Registo de um holograma colinear

7.4.2. Holografia fora do eixo

A configuração em linha considerada antes e utilizada por Gabor tem o grande inconveniente de a imagem 
conjugada se formar na mesma direcção da imagem verdadeira. O método utilizado para resolver este problema 
consiste em fazer com que as ondas objecto e de referência tenham direcções diferentes. Esta técnica parece 
constituir uma modificação trivial da configuração em linha utilizada por Gabor; contudo, passaram cerca de dez 
anos após o trabalho pioneiro de Gabor até que a nova técnica tivesse sido sugerida por Leith e Upatnieks.

A Fig. 7.1 mostra uma montagem típica para realizar a holografia fora do eixo. A luz do laser é dividida 
em dois feixes, os quais são depois expandidos usando objectivas microscópicas. A luz difundida pelo objecto 
interfere com a onda de referência e o padrão de interferência resultante é registado na placa holográfica. 
Devido ao comprimento de coerência limitado da fonte, deve procurar-se que os percursos ópticos das ondas 
objecto e de referência sejam semelhantes, optimizando desse modo o contraste do padrão de interferência na 
placa holográfica. Quando a reconstrução do holograma é feita usando a mesma montagem, deve proceder-se à 
obstrução da onda objecto, ou simplesmente à remoção do divisor de feixe.

O padrão de interferência deve permanecer estacionário durante o tempo de exposição para que o seu 
registo se processe de modo satisfatório. A qualidade do holograma é bastante afectada, mesmo no caso de o 
movimento do padrão corresponder a uma pequena fracção do período espacial das franjas. Importa, por isso, 
que as posições de todos os componentes da montagem que possam afectar os percursos ópticos das ondas objecto 
e de referência – espelhos, divisores-de-feixe, o próprio objecto, etc. – permaneçam fixas durante a exposição da 
placa holográfica. Estas exigências poderão ser satisfeitas com relativa facilidade se a montagem holográfica se 
encontrar sobre uma mesa óptica suficientemente massiva e sustentada por um conjunto de cilindros pneumáticos. 
A massa elevada da mesa proporciona inércia mecânica, enquanto que o sistema pneumático isola de modo eficaz 
a mesa das vibrações que possam afectar o laboratório.

7.5 Classificação dos hologramas

Os hologramas podem ser classificados de acordo com o ângulo feito entre  as direcções de propagação das 
ondas objecto e de referência. 
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7.5.1. Hologramas finos

Na maioria dos casos, as emulsões fotográficas apresentam uma espessura entre 5 e 16 mm. Neste caso, 
quando o ângulo feito entre as ondas objecto e de referência, é pequeno ( ≤φ 10º ), o espaçamento entre as franjas de 
interferência das duas ondas é semelhante à espessura da emulsão. Neste caso, o meio de registo pode considerar-
-se bidimensional e o holograma assim obtido é chamado holograma fino. Quando os ângulos de incidência das 
ondas objecto e de referência, medidos relativamente à normal à superfície holográfica, são simétricos, as franjas 
registadas são perpendiculares a essa superfície.

7.5.2. Hologramas espessos

Quando o ângulo entre as ondas objecto e de referência é moderadamente grande, situando-se no intervalo 
compreendido entre os 10º e os 120º, o espaçamento entre as franjas é inferior à espessura do meio de registo e o 
holograma resultante é designado por holograma espesso (Fig. 7.7a). Quando as duas ondas incidem simetricamente 
em relação à normal a essa superfície as franjas registadas na emulsão fotográfica são perpendiculares à superfície 
do holograma. 

Tipicamente, a frequência espacial do padrão de interferência que se pretende registar é de várias centenas, 
chegando mesmo a ser da ordem das 1000 linhas por milímetro. Estruturas tão finas como estas não podem ser registadas 
em filmes fotográficos normais, cuja capacidade de registo se limita a cerca de 100 linhas/mm. São necessárias para o 
efeito emulsões fotográficas especiais, tais como as da Eastman Kodak tipo 649F e as da Agfa Gevaert tipo 8E70.

		  		    (a)                                                                           (b)
Figura 7.7 – Representação das fases (a) de registo de um holograma espesso e 

 (b) de reconstrução da onda objecto a partir desse holograma.

	 A teoria usada para descrever a luz difractada por um holograma espesso (Fig. 7.7b) tem por base a lei 
de Bragg. Supondo que o espaçamento entre as franjas é d e que o ângulo entre o plano dessas franjas e a onda de 
reconstrução é a, a condição de Bragg é dada por:

lα nd =sen2 ,   n = 1, 2, ...	 					                      (7.17)

A necessidade de satisfazer a condição de Bragg faz com que a reconstrução da imagem holográfica, a 
partir de um holograma espesso, seja muito sensível ao ângulo que a onda de reconstrução faz com o holograma. 
Por outro lado, essa dependência angular faz com que seja possível, usando ondas de referência com diferentes 
ângulos, registar vários hologramas na mesma emulsão. A partir de cada holograma pode-se reconstruir a 
respectiva onda objecto, sem que isso implique a reconstrução das outras ondas objecto também registadas na 
mesma placa. A Eq. (7.17) evidencia que a onda difractada por um holograma espesso é também sensível ao 
comprimento de onda usado na reconstrução.
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Tanto nos hologramas espessos como nos hologramas finos, considerados na secção anterior, o observador olha 
através do holograma para ver a imagem holográfica. Trata-se, pois, em ambos os casos, de hologramas de transmissão, 
que se obtêm sempre que as ondas objecto e de referência incidem no mesmo lado da emulsão (Fig. 7.7a).

7.5.3. Hologramas de reflexão 

A configuração que proporciona um ângulo máximo entre as ondas objecto e de referência corresponde 
à situação em que essas ondas incidem em lados opostos da emulsão, como se representa na Fig. 7.8a. Neste 
caso, obtém-se uma rede de difracção tridimensional denominada holograma de reflexão. De facto, no processo 
de reconstrução, estes hologramas reflectem a luz na direcção do observador (Fig. 7.8b), o qual vê uma imagem 
virtual atrás do holograma (como se fosse num espelho).

                      

(a)                                                                                   (b)
Figura 7.8 – Representação das fases (a) de registo de um holograma de reflexão e 

(b) de reconstrução da onda objecto a partir desse holograma.

A teoria usada para descrever a luz difractada por um holograma de reflexão tem por base a condição 
de Bragg dada pela Eq. (7.17). Supondo que se tem  n = 1 nesta equação e considerando um dado ângulo de 
observação a,  a interferência construtiva entre as ondas reflectidas acontece apenas para um certo comprimento 
de onda αl , sem que se verifique qualquer perturbação das ondas com outros comprimentos de onda. Ou seja, 
quando iluminado por luz branca, este tipo de hologramas funciona como um filtro de comprimentos de onda, 
permitindo a reconstrução da imagem apenas para o comprimento de onda αl .

	

Figura 7.9 - Montagem para o registo de hologramas de luz branca.

A Fig. 7.9 mostra uma montagem que permite a obtenção de hologramas de luz branca. Para o registo 
é necessário utilizar uma fonte de luz coerente (laser). O feixe laser é expandido, colimado e dirigido através 
da placa fotográfica para o objecto. A onda de referência corresponde à luz que provém directamente do laser, 
enquanto que a onda objecto corresponde à luz que é difundida por esse objecto. 
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7.6. Interferometria holográfica

Uma das aplicações mais importantes da holografia reside na área da interferometria. De facto, a holografia 
permite guardar a amplitude e a fase da onda objecto que poderá ser usada posteriormente para fins interferométricos. 
Esta técnica torna igualmente possível a comparação de um objecto consigo próprio num instante posterior. 

Dada a sua grande sensibilidade, a interferometria holográfica pode ser usada para obter informação 
importante no que respeita às características estruturais de um dado objecto, observando o movimento da sua 
superfície quando ele é sujeito a uma tensão. Assim, esta técnica permite realizar uma grande variedade de 
inspecções não-destrutivas, sempre que o parâmetro de interesse se manifesta através de descontinuidades no 
deslocamento da superfície desse objecto. Essas descontinuidades aparecem como uma anomalia num padrão 
de franjas de interferência que seria em princípio regular, permitindo deste modo identificar a região defeituosa.

Interferometria holográfica em tempo real

Neste método, começa-se por obter e processar o holograma do objecto. Em seguida, ilumina-se o holograma 
com a onda de referência e faz-se interferir a imagem reconstruída com a onda proveniente directamente do 
objecto. As franjas de interferência indicam a deformação actual do objecto relativamente à situação em que a 
sua imagem foi registada no holograma. Essa deformação pode ser acompanhada em tempo real através desse 
sistema de franjas. Neste método, o objecto não pode geralmente ser removido da sua posição, dado que se torna 
praticamente impossível recolocá-lo exactamente na mesma situação relativamente ao holograma.

Método da dupla-exposição

Neste método a placa holográfica é exposta duas vezes: uma primeira vez com o objecto não perturbado 
e depois uma outra vez com o objecto sob o efeito da perturbação. Deste modo, ambas as frentes de onda são 
registadas  na mesma placa holográfica. Quando o holograma é iluminado com a onda de referência, ambas as 
ondas são reconstruídas e interferem, dando origem a um padrão de franjas que traduz o deslocamento dos vários 
pontos do objecto. A descrição teórica deste método é semelhante à que foi apresentada na secção anterior para o 
método da holografia em tempo real.

Método da holografia em tempo médio

O método da holografia em tempo médio é mais adequado para o caso de objectos sujeitos a um movimento 
vibratório periódico.  A exposição, neste caso, ocorre durante um tempo relativamente longo, quando comparado 
com o período de vibração. A imagem final pode ser considerada como o resultado da sobreposição de um grande 
número de imagens, formando um padrão de ondas estacionárias. As franjas claras revelam as zonas nodais, que 
se mantêm estacionárias durante a exposição, enquanto que as linhas de contorno (franjas escuras) correspondem 
a zonas com amplitude de vibração constante.
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7.7. Outras aplicações da Holografia

Para além da interferometria holográfica descrita na Secção 7.6, a holografia proporciona uma grande 
variedade de outras aplicações. Entre elas pode-se referir o reconhecimento de padrões. Neste âmbito, pode-se, 
por exemplo, pretender examinar um texto à procura de uma dada palavra. A luz proveniente desse texto passa 
através de um holograma da palavra procurada num sistema óptico adequado. A presença da palavra em causa 
é indicada, no local onde ela se encontra, pelo aparecimento de uma mancha brilhante. O holograma funciona, 
assim, como um filtro, que reconhece e transmite apenas o padrão de frequências espaciais semelhante ao que se 
encontra registado nele. Esta técnica poderá, eventualmente, vir a ser usada por robôs, levando à identificação de 
certos objectos e  ao consequente direccionamento do seu movimento.

Outra aplicação muito importante da holografia reside no armazenamento de informação. Atendendo 
a que a técnica holográfica permite reduzir essa informação a dimensões da ordem do comprimento de onda, 
adivinha-se que um único holograma de volume poderá armazenar uma enorme quantidade de informação. Esta 
quantidade pode ser aumentada  rodando o holograma e realizando sucessivamente novas exposições. Aliás, em 
vez de uma placa fotográfica convencional, pode-se usar para este efeito certos cristais fotossensíveis, como seja 
o cristal de niobato de lítio. Teoricamente, supõe-se que toda a informação de uma grande biblioteca poderá ser 
armazenada num destes cristais com as dimensões de um cubo de açúcar!

 Outro aspecto fascinante do armazenamento holográfico de informação refere-se à sua segurança. Esta 
característica tem que ver com o facto de qualquer dado ficar registado em todo o volume do holograma. Deste 
modo, a danificação de uma parte do holograma não impede a reconstrução posterior desse dado a partir da parte 
não danificada. Essa danificação terá algum impacto apenas ao nível da razão sinal-ruído na imagem reconstruída.

As ondas usadas na realização de um holograma não têm de ser necessariamente de natureza 
electromagnética, podendo-se usar para o efeito também ondas ultra-sónicas. Atendendo à capacidade destas 
ondas para penetrar objectos que são opacos para a luz visível, reconhece-se facilmente que os hologramas 
realizados com estas ondas – os chamados hologramas ultra-sónicos – poderão ser bastante úteis. A holografia 
ultra-sónica poderá, por exemplo, proporcionar imagens tridimensionais de estruturas ou cavidades existentes 
dentro dos mais variados corpos opacos, nomeadamente do corpo humano.

7.8. Problemas resolvidos

PR 7.1. Assuma que as posições do objecto e da fonte do feixe de referência se encontram ambas a 100 cm do meio 
de registo e separadas entre si 10 cm. Determine a resolução mínima que o filme holográfico deve ter se se usar luz 
com um comprimento de onda 500=l nm. Que tipo de holograma será registado neste caso?

Resolução
O problema pode ser tratado com base nos resultados obtidos no capítulo 3 para a interferência entre 

duas ondas coerentes. No caso presente, o objecto e a fonte do feixe de referência assumem o papel das duas 
fendas, separadas de h, na experiência de Young. O espaçamento, y∆ , entre franjas consecutivas no padrão de 
interferência formado a uma distância D é dado pela Eq. (3.25):
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l
h
Dy =∆ .								                              (1)

Usado os dados do problema, tem-se D = 100 cm e h = 10 cm, pelo que,

67
1 105105

10
1 --

- ×=×=∆y
10

10 10 m						           (2)
	
Para poder registar o padrão de interferência, o filme holográfico deve ter uma resolução mínima:

51 102×=∆= -yR 10  linhas/m							            (3)

O ângulo entre as ondas objecto e de referência é dado por:

1.0
1
105arctg2

2
≈







 ×
=

-

φ 10 rad º6≈ 						           (4)

pelo que se trata de um holograma fino.

PR 7.2. Pretende-se produzir uma rede de difracção usando a técnica holográfica e a luz emitida por um laser 
de Hélio-Néon ( 8.532=l nm). Calcule os ângulos a considerar para que a rede tenha 500 linhas por milímetro. 
Qual é a frequência máxima possível da rede?

Resolução
A rede de difracção pode ser produzida registando o padrão de interferência de duas ondas planas numa 

placa holográfica. Os campos das duas ondas planas incidentes na placa podem ser representadas por

1
11

φieAE -= , 2
22

φieAE -= . 							            (1)

Supondo que a placa se situa no plano xy e que as ondas se propagam no plano yz, as suas fases podem 
escrever-se na forma

	 yk 11 senθφ = , yk 22 senθφ = 						           (2)

onde 1θ  e 2θ  são os ângulos que os vectores de onda fazem com a normal à placa (coincidente com o eixo dos z).
A menos de um factor constante, a distribuição de intensidade na placa holográfica é dada por:

( )2121
2
2

2
1 cos2 φφ -++= AAAAI 						           (3)

Haverá uma franja brilhante quando ( ) 1cos 21 =-φφ , ou seja, 

[ ] pθθ
l
pφφ 2sensen2

2121 py =-=- ,						           (4)

sendo p um número inteiro. Da Eq. (4) tira-se que a posição da franja brilhante de ordem p é:

21 sensen θθ
l

-
=

pyp
								            (5)

O espaçamento entre franjas consecutivas é dado por 

21
1 sensen θθ

l
-

=-=∆ + pp yyy 						           (6)
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Se a normal à placa bissectar o ângulo (ϕ ) formado entre as duas ondas, tem-se 2/21 ϕθθ =-= , pelo que 
a frequência espacial yf ∆= /1  se pode escrever na forma

l
ϕ )2/sen(2

=f 								              (7)

Considerando uma frequência de 500 linhas por milímetro, tem-se

º20.18105
2

108.632arcsen2
2

arcse2 5
9

=



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


××

×
=






=

-

fn lϕ
10 10 18.20º arcsen 			        (8)

Assim, as duas ondas devem fazer um ângulo de 9.1º com a normal.

A frequência máxima obtém-se quando ( ) 12/sen =ϕ , sendo dada por

mm/6,31602
==

l
f mm							            (9)

PR 7.3. Considere a interferência entre duas ondas luminosas planas, com a mesma amplitude e monocromáticas, 
com um comprimento de onda no vazio 8.632=l nm. A onda 1 propaga-se na direcção do eixo dos z, enquanto 
a onda 2 se propaga no plano xz, fazendo um ângulo 1.0=θ rad com o eixo dos z. O padrão de interferência é 
registado numa placa holográfica, situada no plano xy e de largura l = 10 cm na direcção do eixo dos x, Determine 
o número de franjas brilhantes registadas nessa placa holográfica.

Resolução
Os campos das duas ondas  no plano xy  são dados por

( ) 0101 exp ErkEE =⋅-=




							             (1)

( ) 





-=⋅-= θ

l
p sen2expexp 0202 xiErkEE 



					           (2)

O campo resultante é obtido usando o princípio da sobreposição:
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A distribuição de intensidade no padrão de interferência é dada por
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O espaçamento entre as franjas corresponde ao período espacial da distribuição de intensidade:

θ
l

θ
l

≈=∆
sen

x
sen 								              (5)

Substituindo os valores dados, tem-se

3.6
1.0
108.632 9

=
×

=∆
-

x 10 μm							            (6)
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O número de franjas registadas na placa holográfica é:

15873=
∆

=
x

lN 								             (7)
	

PR 7.4.  Quando iluminada por uma onda luminosa, a placa holográfica desenvolvida no problema PR 7.3 funciona 
como uma rede de difracção. Supondo que essa onda é semelhante à onda 1, mostre que o campo transmitido 
pode ser considerado como a soma de três ondas. Interprete este resultado.

Resolução
O  coeficiente de transmissão em amplitude da placa holográfica é dado pela Eq. (7.11):















++=+= θ

l
pβτβττ sen2cos12 2

000 xEtIt BB βItB 				         (1)

Onde 0τ , β , e Bt são constantes, enquanto I foi substituído pela Eq. (5) do problema PR 7.3. Quando 
iluminado pela onda 1, o campo transmitido pela placa holográfica é dado por:
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	      (2)

onde 

3
000 2 EtEA Bβτ += , 								            (3)

3
0EtB Bβ= 									             (4)

O primeiro termo na Eq. (2) representa a onda transmitida directamente através da placa holográfica 
(ordem zero da difracção), enquanto os segundo e terceiro termos representam as ondas difractadas de primeira 
ordem, fazendo ângulos θ  e θ-  com o eixo dos z, respectivamente. Em particular, o terceiro termo representa a 
onda 2 do problema PR 7.3 reconstruída.

PR. 7.5. Obtenha uma expressão para o ângulo segundo o qual se forma a imagem conjugada, assumindo que 
a onda objecto é uma onda plana e que incide no holograma fazendo um ângulo θ  com a normal, enquanto 
as ondas de referência e de reconstrução são gualmente ondas planas, incidindo segundo um ângulo γ  com a 
normal. Indique uma condição para os ângulos θ  e γ  que garanta o desaparecimento dessa imagem conjugada.

Resolução
Assumindo que a onda objecto é uma onda plana e que incide no holograma, situado no plano xy,  fazendo 

um ângulo θ  com a normal, tem-se

)senexp( θikxEO -= 						                      	     (1)

onde se omitiu um factor comum )exp( tiω . A onda conjugada da onda objecto, *
OE , é dada por

[ ])sen(exp)senexp(* θθ --== ikxikxEO 			                     	      (2)
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Ou seja, a onda *
OE  deixa o holograma fazendo um ângulo θ-  com a normal.

Se as ondas de referência e de reconstrução, RE , forem igualmente ondas planas, incidindo no holograma 
segundo um ângulo γ com a normal, tem-se:

)senexp( γikxER -= 					         	                       (3)

)sen2exp(2 γikxER -= 						                      	      (4)

Usando as Eq.s (2) e (4), obtém-se o seguinte resultado para o último termo na Eq. (7.12), *2
OR EE , 

correspondente à imagem conjugada:

[ ]))sen(sen2(exp*2 θγ -+-= ikxEE OR )) )senexp( φikx-= 	           			         (5)

onde 

)sen(sen2sen θγφ -+= .							             (6)

Na Eq. (6), φ  é o ângulo que a onda correspondente à imagem conjugada faz com a normal ao holograma. 
A imagem conjugada deixa de ser observada quando 

1)sen(sen2 >-+ θγ .							             (7)

PR 7.6.  Pretende-se analisar a deformação de um objecto usando o método da integerometria holográfica em 
tempo real. Considere um ponto P na superfície do objecto, que sofre um deslocamento d, de apenas alguns 
comprimentos de onda, para o ponto P’, como se representa na Fig. 7.10. Assumindo que as amplitudes das ondas 
E  e 'E , provenientes do holograma (onda reconstruída) e do objecto, respectivamente, são iguais em módulo, 
obtenha uma expressão para a intensidade  do padrão de interferência em função de d e dos ângulos γ  e θ.

Figura 7.10 - Geometria para o cálculo da diferença de fase entre os campos E  e 'E , 

quando o ponto objecto é deslocado de P para P’.

Resolução
Assumindo que as amplitudes das ondas E  e 'E , provenientes do holograma (onda reconstruída) e do 

objecto, respectivamente, são iguais em módulo, verifica-se apenas uma diferença de fase 21 ψψψ -=∆  entre 
elas, tendo-se:

)exp(' ψ∆= iEE 							             	       (1)
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A intensidade correspondente à sobreposição das duas ondas é dada por:

( )( )*'' EEEEI ++= =
2

cos4 2
0

ψ∆I 		   	                         	       	      (2)

onde I0 = EE*. A Eq. (2) é semelhante à Eq. (3.7), obtida para o caso da experiência de Young. A diferença de fase 
ψ∆  é determinada pela diferença de percursos entre as ondas interferentes. Considerando a geometria da Fig. 

7.10, tem-se que essa diferença de percursos é s = u +  v   e

θcosdu = ,	 γcosdv = 						           (3)

Deste modo, a diferença de fase é dada por

)cos(cos)( γθψ +=+=∆ kdvuk kd 					           	      (4)

onde k é o número de omda. Substituindo a Eq. (4) na Eq. (2), obtém-se
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
 += )cos(cos

2
cos4 2

0 θγkdII kd 					           	      (5)

Os ângulos γ  e θ, assim como o número de onda k, podem ser conhecidos a partir da configuração 
experimental.

PR 7.7. Numa experiência de interferometria holográfica, a superfície a estudar é iluminada perpendicularmente 
por luz com comprimento de onda 500=l nm. Se o deslocamento a ser determinado é de 4000 nm, diga quantas 
franjas serão contadas quando

a) o deslocamento é perpendicular à superfície;
b) o deslocamento faz um ângulo de 60º com a normal.

Resolução
a) Como se viu no Capítulo 3, quando um dos espelhos do interferómetro de Michelson sofre uma translação 

de 2/0l , cada franja no padrão de interferência desloca-se de modo a ocupar o lugar da franja adjacente. Deste 
modo, a uma distância d∆  percorrida pela superfície a estudar na direcção da normal corresponde um número, 
N,  de franjas que passam por uma dada posição de referência, dado por:

0

2
l

dN ∆
= 									               (1)

Usando os valores 5000 =l nm e =∆d 4000 nm, tem-se
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16  franjas							            (2)

b) Se o deslocamento fizer um ângulo de 60º com a normal, tem-se

8º60cos16cos2

0
=×=

∆
= θ

l
dN 16 60  franjas					          (3)
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PR 7.8. Considere o caso de um objecto oscilando de modo sinusoidal, com uma amplitude d e uma frequência 
angular ω . Tendo por base a geometria da Fig. 7.10 para o caso 0== θγ , obtenha uma expressão para a 
intensidade da onda objecto reconstruída e represente-a graficamente.

Resolução
Pode-se escrever a onda objecto na forma:

Eo(t) = Aexp(−ik2dsenωt)						            	       (1)

A energia de exposição pode ser obtida na forma:

∫=
Bt

dttIB
0

)( dt 	       							             (2)

sendo a intensidade resultante dada por:

( )( )*)()()( RORO EtEEtEtI ++= 					           	       (3)

Por outro lado, o coeficiente de transmissão em amplitude da emulsão fotográfica na zona linear da Fig. 7.3 
pode ser escrita na forma:

Bβττ += 0 								              (4)

Usando como onda de reconstrução a onda de referência RE , obtêm-se os quatro termos referidos na Secção 
7.2, um dos quais corresponde à imagem directa do objecto, dada por:

∫=
Bt

ORd dttEEE
0

2 )(β dt 	

     	 ∫ -=
Bt

R dttdsenikAE
0

2 )2exp( ωβ Aexp(−ik2dsenωt)dt 	    	                    	       	       (5)

O integral do membro direito na Eq. (5) pode exprimir-se em termos da função de Bessel de ordem zero, 

0J , que é definida do modo:

∫=
p

α
p

α
2

0
0 )exp(

2
1)( dtsentiJ exp(iαsent)dt 				         			         (6)

 

Deste modo, a intensidade da onda objecto reconstruída pode ser dada na forma:

)2(2
0

* kdJEEI ddd ∝= kd 					           		        (7)

Na Fig. 7.11 mostra-se o gráfico da função 2
0J . A função tem zeros para 405.2≈α , 5.52, ..., que não são equi-

distantes. Por outro lado, a altura dos máximos de ordem superior diminui com o aumento da diferença de fase.

Figura 7.11 - Gráfico da função )(2
0 αJ .
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7.9 Problemas propostos

PP 7.1. Descreva o princípio da holografia, comparando-a com a fotografia. Justifique a importância da coerência 
da luz usada no registo holográfico.

PP 7.2. Partindo das Eq.s (7.5) e (7.6), obtenha as Eq.s (7.8a) e (7.8b) para a intensidade transmitida quando o 
negativo do registo holográfico é iluminado por uma onda de reconstrução com intensidade RI .

PP 7.3. Mostre que, no sentido de o holograma proporcionar uma onda transmitida cuja amplitude seja uma 
reprodução linear da intensidade registada, os gamas correspondentes às cópias negativa e positiva devem 
satisfazer a condição 2=PNγγ .

PP 7.4. Explique por que razão os efeitos não-lineares são mais acentuados nos hologramas de fase do que nos 
hologramas de amplitude.

PP 7.5. O filme fotográfico Kodak Tri-X tem uma resolução máxima de cerca de 50 linhas/mm. Qual é o ângulo má-
ximo entre as ondas objecto e de referência para este filme se se usar luz com comprimento de onda λ = 632.8 nm? 

PP 7.6. Regista-se um holograma, de tal modo que  as ondas objecto e de referência incidem no filme segundo um 
ângulo de 25º e de 45º, respectivamente. Usando a mesma onda de referência durante a reconstrução, segundo 
que ângulo se formará a imagem conjugada? Para que valor do ângulo de incidência da onda de reconstrução se 
verifica o desaparecimento da imagem conjugada?                                                         

PP 7.7. Pretende-se produzir uma rede de difracção usando a técnica holográfica e luz com um comprimento de 
onda λ = 550 nm. Esboce um esquema da montagem a utilizar e calcule os ângulos a considerar para que a rede 
tenha 500 linhas por milímetro.

PP 7.8. Um holograma de luz branca é registado usando luz com comprimento de onda λ = 660 nm, de tal modo 
que as ondas objecto e de referência são ambas perpendiculares à placa holográfica. Durante a reconstrução, para 
que valor do ângulo de incidência aparece a imagem com uma cor verde ( λ = 500 nm)?
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Capítulo 8

ÓPTICA NÃO-LINEAR

Assim como um sistema mecânico simples (por exemplo, uma mola) pode manifestar uma resposta não- 
-linear quando se encontra sujeito a forças suficientemente intensas, também é razoável supor que um dado meio 
material, quando percorrido por um feixe luminoso de intensidade elevada, evidencie efeitos não-lineares. De 
facto, estes efeitos tornaram-se facilmente observáveis com o advento de fontes de luz suficientemente intensa 
e coerente, como sucede com os lasers. Nestas circunstâncias, verifica-se que as propriedades ópticas do meio 
variam com a intensidade da luz e que a interferência de duas ou mais ondas luminosas nesse meio deixa de 
satisfazer o princípio da sobreposição. A primeira experiência no âmbito da óptica não-linear foi realizada por 
Peter A. Franken e seus colaboradores na Universidade de Michigan, em 1961, quando observaram pela primeira 
vez os fenómenos da geração do segundo harmónico e de rectificação óptica.

Neste capítulo serão referidos apenas alguns dos fenómenos mais importantes na área da óptica não-linear, 
sendo alguns deles discutidos no caso em que o meio não-linear é uma fibra óptica. Na realidade, o domínio 
da óptica não-linear é actualmente bastante extenso, contemplando muitos outros fenómenos para além dos 
referidos neste capítulo.

8.1. O meio não-linear

No tratamento habitual da propagação da luz num meio material assume-se uma relação linear entre o 
campo óptico e a resposta desse meio, i. e., a polarização, dada por

EP χε0= 							                          	    (8.1)

onde χ  é a susceptibilidade do meio e 0ε  a permitividade do vácuo. No caso de um meio com características não-
lineares, a susceptibilidade pode ser escrita como uma série de potências, na forma:

⋅⋅⋅+++= 2
321 EE χχχχ 						            	   (8.2)

Deste modo, substituindo a Eq. (8.2) na Eq. (8.1), tem-se que a polarização pode  ser apresentada na forma:

P = ε0χ1E + PNL							            	   (8.3)
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O primeiro termo no membro direito da Eq. (8.3) corresponde à parte linear da polarização, enquanto que 
o termo PNL corresponde à parte não-linear e é dado por: 

PNL = ε0(χ2E 2 + χ3E 3 + ...) = P2 +  P3 + ...				        	  (8.4)

Os coeficientes linear e não-lineares da susceptibilidade, assim como a relação entre P e E dada pelas Eq.s 
(8.3) e (8.4), descrevem completamente a resposta do meio ao campo eléctrico.

De entre os fenómenos resultantes do termo de segunda ordem na Eq. (8.4), P2 = ε0χ2E 2 , pode-se referir 
a geração do segundo harmónico, a mistura de três ondas, a rectificação óptica, a amplificação paramétrica e o 
efeito Pockels. Contudo, verifica-se que esse termo se anula e estes fenómenos deixam de ser observados quando 
o meio material é centrossimétrico. Quanto ao termo de terceira ordem na Eq. (8.4), 

P3 = ε0χ3E 3 
 , 								          (8.5)

ele dá origem a fenómenos como a mistura de quatro ondas, a conjugação óptica da fase, a dispersão Raman, a 
dispersão Brillouin e o efeito Kerr.

8.2.  Propagação de ondas num meio 
não-linear

Considere-se um meio homogéneo, livre de cargas, isolador e não magnético, cujas relações constitutivas 
são dadas por:

HB


m= 								              	   (8.6)

PED


+= 0ε 							             	   (8.7)

A polarização do meio, P


, pode ser decomposta numa parte que depende de um modo linear e noutra que 
depende de um modo não-linear relativamente ao campo E



, como se indica na Eq. (8.3). A lei de Ampére, dada pela 
Eq. (1.10), pode-se escrever com base nos vectores campo magnético, H



, e deslocamento eléctrico, D


, na forma:

t
DH

∂
∂




=×∇ 							             	   (8.8)

onde se considerou que 0


=J . Manipulando as Eq.s (1.9), (8.3) e (8.6)-(8.8)  de modo a eliminar o campo 
magnético, pode-se obter a seguinte equação de onda para o campo eléctrico num meio não-linear:

2

2

2

2
2

t
P

t
EE NL

∂
∂m

∂
∂mε





=-∇ με PNL 						            	   (8.9)

onde

)1(0 χεε += 							           	 (8.10)
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Em contraste com o que acontece com a equação de onda linear, não é possível obter soluções analíticas 
de âmbito geral para a Eq. (8.9). Por este motivo, analisar-se-á a seguir um caso específico, correspondente ao 
problema da interacção de três ondas na presença de uma não-linearidade quadrática.

8.2.1. Interacção de três ondas

Considere-se a situação em que o campo eléctrico é composto por três ondas planas com frequências 1ω , 

2ω  e  3ω , relacionadas na forma: 

213 ωωω += 							           	 (8.11)

Supondo que as três ondas se propagam segundo o eixo dos z, pode-se escrever os respectivos campos do modo:

( ){ } ( ){ }[ ]zktizEzktizEEE iiiiiiii --+-== ωωω exp)(*exp)(
2
1)( , i=1, 2, 3	 (8.12)

Assumindo que a amplitude complexa das ondas varia lentamente com a distância z, tem-se que o primeiro 
termo no membro esquerdo da Eq. (8.9) dá:

( ){ } ..exp2
2
1 22 cczkti

z
EikEkE ii

i
iiii +-






 +-=∇ ω

∂
∂2iki

		                   	 (8.13)

onde c.c. indica o complexo conjugado da expressão anterior.

Considera-se que a parte não-linear da polarização é dada apenas pelos termos de segunda ordem, podendo 
ser escrita na forma:

PNL  = PNL (ω1) + PNL (ω2) + PNL (ω3)

	     = d [E*(ω2)E(ω3) + E* (ω1)E(ω3) + E (ω1)E(ω2)]   		                  	(8.14)

onde d é o chamado coeficiente não-linear. Usando as Eq.s (8.11)-(8.14), pode-se obter da Eq. (8.9) três equações 
acopladas, dadas por:

( ){ }zkkkiEdEi
z

E )exp*
2 12323

1

11 ----=
ε
mω

∂
∂ dE3

		             	     	 (8.15)

	

( ){ }zkkkiEdEi
z

E )exp*
2 12313

2

22 ----=
ε
mω

∂
∂ dE3

		             	     	 (8.16)

( ){ }zkkkiEdEi
z

E )exp
2 32121

3

33 -+--=
ε
mω

∂
∂ dE1

		             		      	 (8.17)
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No caso geral, existe uma diferença de fase entre a onda com frequência 3ω  e as ondas com frequências 1ω  
e 2ω  correspondente a:

123 kkkk --=∆ 							           	 (8.18)

Quando 0=∆k  pode-se multiplicar cada uma das Eq.s (8.15)-(8.17) por *iE  e obter a seguinte identidade:

( ) ( ) ( )*1*1*1
33

3

3
22

2

2
11

1

1
EE

z
EE

z
EE

z ∂
∂

m
ε

ω∂
∂

m
ε

ω∂
∂

m
ε

ω
-==  			  (8.19)

A Eq. (8.19) corresponde à lei da conservação da energia, sendo conhecida por relação de Manley-Rowe. 

As Eq.s (8.15)-(8.17) podem ser usadas para caracterizar vários fenómenos não-lineares, tais como a geração 
da frequência soma, − como se mostra no problema PR 8.3 − , a  amplificação paramétrica − como se mostra no 
problema PR 8.4 − e a geração do segundo harmónico, que considera a seguir.

8.3. Geração do segundo harmónico

Consideremos o caso em que  ω1 = ω2 = ω  e  ω3 = 2ω , 0=∆k  e  ε1 = ε2 = ε . Assume-se que os campos 

são dados por { })(exp)(21 ωφω iEEE ==  e { })2(exp)2(3 ωφω iEE =  e que o meio não-linear se situa na região 

0≥z . Admite-se ainda que 03 =E  e { })(exp01 ωφiEE =  para z = 0.

Nestas condições, as Eq.s (8.15)-(8.17) resumem-se apenas a duas, que se podem escrever na forma:

{ }ψωω
∂

ω∂
∆--= iEAEi

z
E exp)2()(

2
1)( AE 		                 			   (8.20)

{ }ψω
∂

ω∂
∆-= iiAE

z
E exp)()2( 2 			           			   (8.21)

onde

ω
ε
m dA = 							                     (8.22a)

e

)2()(2 ωφωφψ -=∆ 					      	               (8.22b)

De modo a favorecer o incremento do segundo harmónico, assumir-se-á a condição:

	
2
pψ =∆

 
rad							           
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Nesta situação e usando a lei da conservação da energia, pode-se reescrever a Eq. (8.21) na forma:

[ ])2()()2( 22
0 ωω

∂
ω∂ EEA

z
E

-= 				                        	 (8.23)

Integrando a Eq. (8.23) obtém-se a seguinte solução para a amplitude do segundo harmónico a uma 
distância z no meio não-linear:

[ ]zAEEE )(tanh)()2( 00 ωωω = AE 					                   	 (8.24)

Usando a Eq. (8.24) e o princípio da conservação da energia pode-se obter igualmente a seguinte solução 
para a evolução da amplitude da onda incidente:

[ ]zAEEE )(sech)()( 00 ωωω = AE 				                    	   	 (8.25)

Na Fig. 8.1 ilustra-se o comportamento das intensidades do segundo harmónico, )2()2( 2 ωω EI ∝ , e da 
onda incidente, )()( 2 ωω EI ∝ .

Figura 8.1 - Evolução das intensidades do segundo harmónico ( ω2 ) e da onda incidente (ω ).

8.4. Conjugação óptica da fase

A conjugação óptica da fase (COF) é um fenómeno não-linear que deve o seu nome ao facto da parte 
espacial do feixe resultante da interacção ser igual ao complexo conjugado da parte espacial da onda incidente. Ou 
seja, a onda gerada propaga-se no sentido contrário ao da onda original, reproduzindo exactamente a forma dessa 
onda em cada posição. Deste modo, pode-se considerar o meio não-linear que produz a onda com fase conjugada 
como um espelho, designado habitualmente por espelho de conjugação da fase (ECF). As características deste 
espelho são geralmente distintas dos espelhos ordinários.

Considere-se o caso de uma onda plana: 

{ })(exp0 kztiEEi -= ω kz , 					      		  (8.26)
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incidindo normalmente num espelho plano ordinário. Neste caso, a onda reflectida é também uma onda plana, 
dada por: 

{ })(exp0 kztiEEr += ω kz . 							       (8.27)

Ou seja, do ponto de vista matemático, se se exceptuar o termo tω , a onda reflectida é o complexo conjugado 
da onda incidente e apresenta as características da onda com fase conjugada referida antes. 

Se a onda incidente no espelho plano ordinário não for uma onda plana, ou se a incidência não for normal, 
a onda reflectida por esse espelho já não tem as características da onda com fase conjugada. No caso de uma onda 
esférica gerada num dado ponto, é possível ter uma onda com fase conjugada, que converge para esse mesmo ponto, 
apenas se se tiver um espelho côncavo com uma curvatura exactamente igual à da frente de onda nele incidente. 

Em contraste com os espelhos ordinários, um ECF pode produzir uma onda com fase conjugada para uma 
frente de onda incidente com forma arbitrária, sendo ainda capaz de responder de modo imediato às alterações 
espaciais ou temporais dessa mesma frente de onda.

A COF pode ser entendida como holografia em tempo real. Como se viu no Capítulo 7, quando o holograma 
é iluminado por uma onda de reconstrução, RE , exactamente igual à onda de referência utilizada no registo desse 
holograma, obtêm-se duas imagens do objecto original: uma virtual e outra real. A imagem virtual localiza-se 
exactamente na posição em que se encontrava o objecto original. Contudo, se o holograma for iluminado pela 
onda de referência conjugada, *

RE , então a Eq. (7.12) para o campo difractado é substituída por:

)(),(),( *******
0 ORROOORRRBRRt EEEEEEEEEtEEyxyxE ++++== βττ         		  (8.28)

 O último termo na Eq. (8.28), que é proporcional a *2
OR EE , corresponde à onda objecto com fase 

conjugada, *
OE , que proporciona uma imagem real na própria posição do objecto original. 

No processo de COF os processos de registo e de reconstrução holográfica ocorrem em tempo real. A Fig. 
8.2 mostra o ECF exposto às ondas de referência original e conjugada, RE  e *

RE  (que funcionam como ondas 
de bombeamento), assim como às ondas objecto e imagem, OE  e *

OE , respectivamente. Pode-se considerar que 
as ondas RE  e OE  interferem e produzem um holograma em tempo real. A onda *

RE  é difractada por este 
holograma, produzindo a onda com fase conjugada *

OE . Esta técnica de produzir a COF é chamada mistura de 

quatro ondas, dado que corresponde, de facto, à interferência de quatro ondas num meio não-linear.

Figura 8.2 - Geometria para a conjugação óptica da fase por mistura de quatro ondas.

Quando uma frente de onda é distorcida, devido, por exemplo, às flutuações do índice de refracção 
existentes numa dada região, a onda com fase conjugada, ao propagar-se na direcção oposta, encontra as mesmas 
variações, mas de modo inverso. Como consequência, a onda com fase conjugada deixa essa região com a frente 
de onda original completamente restaurada. 
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8.5. Efeitos não-lineares em fibras 
ópticas

Os efeitos não-lineares nas fibras ópticas podem dividir-se de modo genérico em duas categorias. Uma dessas 
categorias contempla as dispersões estimuladas, nomeadamente a dispersão Brillouin estimulada e a dispersão 
Raman estimulada, que resultam da interacção entre os sinais ópticos e as vibrações acústicas ou moleculares do 
material da fibra. Apesar de ambos os processos apresentarem um ganho exponencial, o seu impacto nos sistemas 
de comunicação é bastante diferente, como se verá a seguir. A segunda categoria de efeitos não-lineares é devida à 
modulação do índice de refracção da sílica pelas variações da amplitude do sinal. Este facto dá origem a fenómenos 
como a auto-modulação da fase, a modulação cruzada da fase e a nistura de quatro ondas.

8.5.1. Dispersão Raman estimulada

A dispersão Raman estimulada (DRE) pode ser descrita como um processo envolvendo três ondas: uma 
onda de bombeamento (com frequência ωb ), uma onda de excitação do material, correspondente aos seus modos 
de vibração (com frequência ωv ), e uma onda dispersa, ou onda de Stokes (com frequência ωs ). A Fig. 8.3 ilustra 
as três ondas envolvidas neste processo. No caso de uma fibra óptica, o sentido de propagação da onda de Stokes 
pode ser igual ou oposto ao da onda de bombeamento. No que se segue considerar-se-á apenas a primeira situação. 

As potências de bombeamento (Pb ) e de Stokes (PS ) envolvidas no processo de DRE numa fibra óptica 
satisfazem as seguintes equações diferenciais de primeira ordem:

bef

SbSr
bb

b

A
PPgP

dz
dP

l
lα -=+

dPb

dz Aef

						          	 (8.29)

ef

Sbr
SS

S

A
PPgP

dz
dP

=+αdPS
dz Aef

					         		  (8.30)

onde Aef  é a área efectiva do modo, αb  e  αS  são as constantes de atenuação na fibra para os comprimentos de onda 
de bombeamento e de Stokes, respectivamente, e gr  é o coeficiente de ganho Raman, que está relacionado com a 
parte imaginária da susceptibilidade de terceira ordem χ3 . 

Figura 8.3 – Representação das transições correspondentes a cada uma das ondas envolvidas no processo da DRE.
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Apesar de não haver uma expressão teórica exacta para o coeficiente de ganho gr na sílica fundida, ele pode 
ser obtido a partir das medidas do espectro da dispersão Raman espontânea ou a partir das medidas relativas à 
interacção entre uma onda de bombeamento e uma onda de sinal. Uma característica importante do coeficiente de 
ganho Raman é a banda de frequências relativamente larga em que ele se estende (cerca de 40 THz), verificando-se 
a existência de um pico dominante para um desvio de cerca de 13 THz como se mostra na Fig. 8.4. Contudo, o valor 
máximo deste coeficiente na sílica fundida é duas a três ordens de grandeza inferior ao valor máximo do coeficiente 
de ganho Brillouin, referido na próxima secção.

Figura 8.4 – Coeficiente de ganho normalizado para os casos de polarização paralela (curva a cheio) ou ortogonal (curva a 
ponteado) das ondas de bombeamento e de sinal. (Bromage, J. Lightwave Technol. 22, 79 (2004)).

Quando a atenuação não-linear da potência de bombeamento é pouco significativa, pode-se desprezar o 
membro direito da Eq. (8.29), e obtendo-se então a solução: 

{ }zPzP bbb α-= exp)0()( 						          	 (8.31)

onde )0(bP  é a potência de bombeamento lançada na fibra. Substituindo a Eq. (8.31) na Eq. (8.30) obtém-se o 
seguinte resultado para a potência de Stokes à saída da fibra:










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

-= L
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PgPLP S
ef

ef
brSS α)0(exp)0()(
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 Aef

			                                    (8.32)

onde PS ( )0  é o sinal injectado à entrada da fibra e  Lef 
 é a distância efectiva de interacção dada por

s

L

ef
eL
α

αs1 --
=Lef

								        (8.33)

Na prática, quando apenas um feixe (o feixe de bombeamento) é lançado na fibra, não existe o sinal )0(SP  e 
o processo de DRE tem a sua origem na dispersão Raman espontânea gerada ao longo da fibra. Os fotões gerados 
deste modo experimentam um ganho exponencial de acordo com a Eq. (8.32). A potência de bombeamento limiar 
(Pbl ) corresponde à situação em que a potência de Stokes, originada a partir da dispersão espontânea, atinge um 
valor igual à potência de bombeamento à saída da fibra, sendo dada por:

efr

ef
bl Lg

A
P

16
≈

Lef

16AefPbl 							           	 (8.34)

Considerando os valores típicos  gr = 6.7 × 10−14
 m/W,   Aef = 50

 
mm 2  e  Lef ≈ 20 km, tem-se  Pbl ≈ 600 mW. 

O valor obtido para a potência limiar da DRE é relativamente elevado e pode sugerir que este efeito não 
constitui qualquer limitação para os sistemas de comunicação por fibra óptica. Todavia, essas limitações podem 
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fazer-se sentir, de facto, ao nível dos sistemas de comunicação com múltiplos canais, dado que a potência total 
neste caso pode exceder facilmente aquele limiar. Actualmente, o maior problema suscitado pela DRE tem que 
ver com o acoplamento de canais nestes sistemas, em cujo processo se verifica a transferência de energia de um 
dado canal para os canais com comprimento de onda superior.

A DRE pode ser utilizada na realização de amplificadores de fibra óptica. Na Fig. 8.5 representa-se 
esquematicamente um amplificador Raman de fibra óptica. Estes amplificadores caracterizam-se, nomeadamente, 
por poderem operar em qualquer comprimento de onda e por apresentarem uma curva de ganho bastante larga 
(> 5 THz), pelo que podem ser usados num sistema de comunicação com múltiplos canais para amplificar 
simultaneamente todos esses canais. A mesma característica permite que esses amplificadores possam ser usados 
para amplificar impulsos de luz ultracurtos.

Figura 8.5 – Representação esquemática de um amplificador Raman de fibra óptica.

8.5.2. Dispersão Brillouin estimulada

O processo de dispersão Brillouin estimulada (DBE) tem alguma semelhança com o processo de DRE, 
podendo também ser descrito como uma interacção de três ondas acopladas: a onda incidente, ou onda de 
bombeamento, com frequência bω , uma onda acústica gerada no meio com frequência aω  e uma onda dispersa, 
ou onda de Stokes, com frequência sω . A onda de bombeamento, origina uma onda de pressão no meio, que, por 
sua vez, determina uma modulação periódica do seu índice de refracção. Esta modulação do índice de refracção 
provoca a dispersão da onda de bombeamento, dando assim origem à onda de Stokes. Na Fig. 8.6 representa-se 
de modo esquemático a interacção entre as três ondas envolvidas no processo da DBE.

Figura 8.6 – Representação da interacção entre as três ondas envolvidas no processo da DBE.

As três ondas envolvidas no processo da DBE satisfazem as leis de conservação da energia e do momento, 
pelo que as suas frequências e vectores de onda se relacionam na forma:

Sba ωωω -= 							           	 (8.35)

Sba kkk


-= 							           	 (8.36)
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onde os índices a, b e S se referem às ondas acústica, de bombeamento e de Stokes, respectivamente. A frequência 

aω  e o vector de onda ak


 da onda acústica satisfazem a seguinte relação de dispersão:







==

2
sen2 φω baaaa kvvk 						                      	(8.37)

onde aa kk


= , bb kk


= , av  é a velocidade da onda acústica e φ  é o ângulo entre as ondas de bombeamento e de 
Stokes. Da Eq. (8.37) pode ver-se que a frequência da onda acústica é máxima quando pφ =  rad, anulando-se 
para 0=φ  rad. 

No caso de uma fibra óptica, a onda de Stokes gerada pelo efeito Brillouin propaga-se em sentido contrário 
à onda de bombeamento. A frequência da onda de Stokes é inferior à da onda de bombeamento de um valor igual 
à frequência acústica, dada a partir da Eq. (8.37), com pφ =  rad, por:

b
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nvf
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2
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 2nva 								            	 (8.38)

onde n é o índice de refracção e bl  o comprimento de onda da luz de bombeamento. Considerando os valores 
típicos  va = 5.96  km/s  e  n = 1.45, tem-se  fa = 11.1 GHz para bl = 1.55 mm.

O coeficiente de ganho Brillouin, )( fgB ∆ , é dado por:

22

2

0
2

2
12

7

4
2)(

B

B

Bab
B ff

f
fvc

pnfg
∆+∆

∆
∆

=∆
ρl

γp 12 				                     	 (8.39)

onde aSb ffff --=∆  representa uma possível dessintonia entre as frequências das ondas de bombeamento, de 
Stokes e acústica, p12  é o coeficiente elasto-óptico longitudinal e  ρ0  o valor médio da densidade. O factor γ  des-
creve o efeito da diferença de polarizações entre as ondas de bombeamento e de Stokes. Quando as polarizações 
das duas ondas são paralelas tem-se  γ = 1 e quando são ortogonais tem-se γ = 0. Numa fibra longa e que não man-
tenha a polarização da luz, a direcção relativa dessas polarizações varia continuamente, tendo-se então γ  ≈ 0.5. 

O coeficiente de ganho Brillouin dado pela Eq. (8.39) apresenta um perfil Lorentziano, com largura 
total a meia altura Bf∆ . Esta largura é proporcional a 2/1 bl , pelo que o valor máximo do coeficiente de ganho é 
independente do comprimento de onda da luz de bombeamento. Supondo que 1=γ , 1=bl mm e considerando 
os valores típicos para a sílica fundida  p12 = 0.286,  ρ0 = 2.21 × 103  kg.m 3-  e,   ∆fB = 55 MHz, tem-se para o valor 
máximo do coeficiente de ganho Brillouin  gB (0) = 4 × 10−11 m/W. 

A Eq. (8.39) é válida quando a luz de bombeamento apresenta uma largura espectral inferior à largura 
da curva de ganho ∆fB . Quando esta condição não é satisfeita, e admitindo que a linha de emissão do laser de 
bombeamento tem um perfil Lorentziano com largura ∆fB , o espectro de ganho Brillouin é dado ainda pela Eq. 
(8.39) mas com um valor de pico inferior, dado por:
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A potência máxima transportada pela onda de Stokes é dada por:
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				    		  (8.41)

onde Pb é a potência de bombeamento, Aef é a área efectiva da secção transversal do modo na fibra e  Lef é a 
distância efectiva de interacção, dada pela Eq.  (8.33).  Quando apenas uma onda (a onda de bombeamento) é 
lançada na fibra, a onda de Stokes tem a sua origem na dispersão Brillouin espontânea e experimenta, depois, 
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um ganho exponencial. Define-se um valor limiar para a potência de bombeamento, Pbl , tal que a onda de Stokes 
adquire uma potência semelhante a essa potência de bombeamento à entrada da fibra. Pode-se mostrar que essa 
potência limiar é dada aproximadamente pela expressão:

)0(
21

Bef

ef
bl gL

A
P ≈ Pbl

 21Aef

 Lef gB(0)
							           	 (8.42)

Se se considerar os valores típicos de uma fibra monomodo operando a 1.55 mm, com Aef = 40
 
mm 2 , Lef ≈ 20

 
km 

e gB(0) ≈ 4 × 10−11 m/W, tem-se  Pbl ≈ 1 mW. Este valor relativamente baixo para a potência limiar faz da DBE o 
efeito não-linear dominante em muitas situações. Isto verifica-se, por exemplo, no âmbito dos sistemas ópticos 
coerentes de comunicação, onde as fontes laser utilizadas apresentam larguras espectrais bastante inferiores à 
largura da curva Brillouin ( Bf∆ ). 

Quando a potência transmitida numa fibra óptica excede o limiar Brillouin, uma parte significativa dessa 
potência é convertida na radiação de Stokes e passa a propagar-se no sentido contrário, o que constitui um facto 
duplamente indesejável. Por um lado, a potência do sinal no receptor torna-se inferior à que seria recebida na 
ausência da dispersão Brillouin estimulada. Por outro lado, a onda de Stokes constitui uma realimentação externa 
para o laser emissor, podendo desestabilizar o seu funcionamento. Deste modo, é importante que a potência 
lançada na fibra seja inferior ao limiar Brillouin. Uma técnica que permite elevar o valor desta potência limiar 
consiste em aumentar a largura espectral efectiva da luz de bombeamento, bf∆ . Deste modo, o coeficiente de 
ganho Brillouin é reduzido, de acordo com a Eq. (8.40).

No caso dos sistemas coerentes bidireccionais a DBE pode determinar o acoplamento de canais cuja separação 
seja próxima do desvio Brillouin (≈ 11 GHz a 1.55 mm). Esse acoplamento traduz-se na amplificação de um canal à 
custa da potência transportada por outro. Contudo, dada a largura relativamente reduzida da banda de frequências 
em que o acoplamento pode acontecer (≈ 100 MHz), este efeito pode, na prática, ser facilmente evitado.

Para além das limitações apontadas acima, a DBE pode ser aproveitada de modo positivo para realizar 
amplificadores de fibra óptica. Estes amplificadores podem proporcionar ganhos elevados com potências de 
bombeamento muito modestas, embora a largura da sua curva de ganho seja relativamente pequena. Esta última 
característica pode ser utilizada com vantagem, por exemplo, para conseguir a amplificação selectiva de um dado 
canal em sistemas de comunicação com múltiplos canais.

8.5.3. Auto-modulação da fase

Mostra-se no problema PR 8.2 que se pode exprimir a dependência do índice de refracção das fibras ópticas 
relativamente à intensidade da onda óptica, na forma:

	 Innn 20 += 							           	 (8.43)

onde 0n  é a parte linear do índice de refracção, dada por:

	 10 1 χ+=n 						                       	 (8.44)

sendo 1χ  a susceptibilidade linear. Por outro lado, 2n  é o coeficiente não-linear, conhecido por coeficiente de Kerr, dado por:
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onde 3χ  é a susceptibilidade de terceira ordem.
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A intensidade I na Eq. (8.43) pode ser escrita de modo aproximado na forma

efA
PI ≈

Aef
								            	 (8.46)

onde P é a potência transportada por um modo da fibra e  Aef 
 a área efectiva da secção transversal desse modo.

No caso das fibras ópticas, tem-se:

n0	≈ 1.46 ,	 n2 ≈ 3.2 × 10−20  m2/W			        			   (8.47)

Se se considerar uma fibra monomodo com uma área efectiva  Aef  = 50 μm2 e uma potência P = 100 mW, o 
valor da parte não-linear do índice de refracção é

11
2 104.6 -×≈

efA
Pn

 Aef

6.4 × 10−11 							           	 (8.48)

Apesar deste valor ser bastante pequeno, os seus efeitos tornam-se significativos devido aos longos 
comprimentos de interacção (10 - 10000 km) proporcionados pelas fibras ópticas.

A variação do índice de refracção determina uma variação da constante de propagação do modo, que se 
pode escrever aproximadamente na forma:
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onde 
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e

		  						          	              	 (8.51)
ef

NL cA
Pn20ωβ = βNL  cAef

correspondem à parte linear e não-linear da constante de propagação, respectivamente. Deste modo, uma onda 
incidente na forma:

{ }tiAtzE 0exp),0( ω==  						          	 (8.52)

assume o seguinte aspecto depois de percorrer uma distância z:
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No caso de a onda incidente corresponder a um impulso com uma potência P(t) dependente do tempo, o 
impulso à saída é trinado. Este fenómeno é chamado de auto-modulação da fase (AMF), dado que a variação da 
potência do impulso com o tempo determina a modulação da sua própria fase. 
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A frequência instantânea dentro do impulso pode ser apresentada na forma:
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znt

ef

20
0)( ωωω -=
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					                      	 (8.54)

A Eq. (8.54) mostra que na parte da frente do impulso, em que se tem  dP / dt > 0 , a frequência instantânea 
é  inferior  a  ω0 , enquanto  que, na parte de trás do impulso, em que se tem dP / dt < 0 , essa frequência é superior 
a ω0 . A frequência central do impulso, ω0 , mantém-se inalterada. Deste modo, a AMF impõe um trinado ao 
impulso, como se representa na Fig. 8.7.  

Figura 8.7 – Representação esquemática do trinado imposto ao impulso pela auto-modulação da fase. 

No regime de dispersão normal, os trinados devidos à dispersão e à AMF actuam do mesmo modo. Como 
consequência, o trinado global do impulso tende a acentuar-se para potências mais elevadas do impulso, situação 
em que a não-linearidade da fibra mais se faz sentir. Entretanto, no regime de dispersão anómala, os trinados 
devidos aos dois efeitos actuam do modo oposto, tendendo a compensar-se. Se a compensação for total, o impulso 
mantém a sua forma constante durante a propagação, sendo então designado por solitão.

8.5.4. Solitões em fibras ópticas

O campo eléctrico associado a uma sequência de impulses que se propagam numa fibra óptica alinhada 
segundo o eixo dos zz pode ser escrito na forma: 

( )..),(),(
2
1 )( 00 ccetzUrFE tzi += -ωβφ 						      (8.55)

onde U(z,t) descreve a amplitude complexa da envolvente do campo na posição z, ),( φrF  descreve a distribuição 
transversal do modo fundamental da fibra e 0β  é a constante de propagação do modo na frequência da portadora,  ω0 .  

A única grandeza que varia durante a propagação é a amplitude U(z,t). Dado que a componentes espectrais 
diferentes do campo óptico correspondem constantes de propagação ligeiramente diferentes, torna-se conveniente 
trabalhar no domínio das frequências. A evolução de uma dada componente espectral ),(~ ωzU  é dada por: 

[ ]ziziUzU 0)(exp),0(~),(~ βωβωω -= 						      (8.56)
 

onde ),0(~ ωU  é a transformada de Fourier do sinal à entrada da fibra ),0( tzU =  e )(ωβ  é a constante de 
propagação, que pode ser escrita como a soma de uma parte linear, βL , e de uma parte não-linear,  βNL , como se 
indica nas Eqs. (8.49)-(8.51). 
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Pode-se expandir βL (ω) numa série de Taylor em torno da frequência ω0 , como se fez no Capítulo 5 − ver     
as Eq.s (5.32)-(5.34). Retendo nessa expansão apenas os termos até à segunda ordem em (ω − ω0), substituindo na 
Eq. (8.56), calculando a derivada zU ∂∂ /~

 e convertendo a equação resultante para o domínio dos tempos, usando 
a transformada de Fourier e a relação

t
i
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∂ω ↔∆ 									         (8.57)

obtém-se a equação
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			       		  (8.58)

Normalizando a amplitude U de tal modo que o quadrado do seu módulo seja igual à potência, 
2UP = , 

tem-se 2UNL γβ = βNL , onde

effcA
n20ωγ = cAeff  

									         (8.59)

é o chamado parâmetro não-linear da fibra. 

Considerando um referencial que se move com a velocidade de grupo e usando a nova variável temporal 

gv
zt -=τ 									         (8.60)

a Eq. (8.58) pode ser escrita na forma:
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A Eq. (8.61) é conhecida como a equação não-linear de Schrödinger (ENLS) e descreve a propagação de 
impulsos num fibra óptica sob os efeitos da dispersão da velocidade de grupo e da não-linearidade da fibra. 

Pode-se considerar uma amplitude normalizada Q dada por:

),(),( 0 ττ zQPzU = 							       (8.62)

onde 0P  é a potência de pico do impulso na entrada da fibra. Usando as Eqs. (8.61) e (8.62), verifica-se que 
),( τzQ  satisfaz a equação:
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Pode-se definir uma distância não-linear, LNL , do modo

0
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LNL γ
= LNL 									         (8.64)

Pode-se definir igualmente uma distância de dispersão, DL , na forma: 
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onde t0  é a largura do impulso. LNL e LD correspondem a distâncias de propagação ao fim das quais os fenó-     
menos não-lineares e dispersivos, respectivamente, se tornam relevantes na evolução do impulso.  

Usando a distância Z, normalizada pela distância de dispersão LD , e a variável temporal T, normalizada 
pela largura do impulso  t0 , a Eq. (8.63) fica:
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No segundo termo da Eq. (8.66), o sinal mais corresponde ao caso da dispersão anómala ( 02 <β ), enquanto 
que o sinal menos corresponde à dispersão normal ( 02 >β ).

No regime de dispersão anómala e considerando N=1, a Eq. (8.66) possui uma solução na forma:

Q(Z,T) = sech(T)exp(iZ / 2)	 			                                 		  (8.68)

A solução anterior representa o chamado solitão brilhante fundamental, que se caracteriza pelo facto de a sua 
forma − representada na Fig. 8.8 − se manter constante durante a propagação. Contudo, nesse mesmo regime, a Eq. 
(8.66) admite igualmente soluções correspondentes a solitões de ordem superior, correspondentes a valores inteiros 
N>1, cujas formas variam periodicamente com a distância de propagação.  O valor de N indica a ordem do solitão. 
Na Fig. 8.9 mostra-se a evolução do solitão de segunda ordem, obtida a partir de um impulso inicial dado por:

)sech(2),0( TTQ = 							           	 (8.69)

Figura 8.8 - Representação  da intensidade do solitão brilhante fundamental.

Figura 8.9 – Evolução do solitão de segunda ordem, governado pela Eq. (8.66).
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No regime de dispersão normal, a Eq. (8.66), apresenta igualmente uma solução do tipo solitão, dada por:

Q(Z,T) = tanh(T)exp(iZ) 					                      	 (8.70)

Esta solução, conhecida por solitão escuro, representa um impulso de intensidade reduzida num fundo de 
intensidade constante e mais elevada. 

O facto de os solitões brilhantes fundamentais poderem propagar-se nas fibras ópticas sem se deformarem 
apresenta potencialidades enormes no domínio do processamento todo óptico do sinal e dos sistemas de 
comunicação de elevado débito. 

8.6. Problemas resolvidos 

PR 8.1. Assumindo um meio com simetria de inversão, em que a não-linearidade de terceira ordem é dominante, 
mostre que a polarização do material se pode escrever na forma:

EEP 





 +=

2)3()1(
0

ˆ
4
3 χχε 							     

Considere para o efeito que as condições de ajuste de fase para a geração do terceiro harmónico não são 
satisfeitas.

Resolução
Um meio com simetria de inversão apresenta uma susceptibilidade de segunda ordem nula. Por outro lado, 

a não-linearidade de terceira ordem pode apresentar-se na forma:
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)3( χε=NL 	     							             (1)

Considere-se o campo eléctrico de uma onda plana, dado por: 
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onde c.c. indica o complexo conjugado. Substituindo a Eq. (2) na Eq. (1), tem-se
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	      (3)

Se as condições de ajuste de fase para a geração do terceiro harmónico não forem satisfeitas, tem-se que o 
primeiro termo no membro direito da Eq. (3) pode ser desprezado, tendo-se então: 
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Tendo em consideração este resultado e a Eq (8.3), a polarização do material vem dada por:
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PR 8.2. Usando o resultado obtido no problema PR 8.1, mostre que o índice de refracção do material varia com a 
intensidade, I, como se apresenta na Eq. (8.31).

Resolução
A intensidade da onda plana é dada pelo módulo do valor médio do vector de Poynting, dado pela Eq. (1.58):
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onde n0 é a parte linear do índice de refracção. Substituindo a equação anterior na Eq. (5) do problema PR 8.1, 
tem-se que a polarização se pode escrever na forma:
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Por outro lado, a polarização e o índice de refracção de um meio relacionam-se genericamente na forma: 

EnP )1( 2
0 -= ε 								             (3)

Comparando as Eq.s (2) e (3), pode-se obter o seguinte resultado para o índice de refracção 
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é a parte linear do índice de refracção e

2
00

)3(

2 4
3

nc
n

ε
χ

= 								             (6)

é o coeficiente da parte não linear do índice de refracção, também conhecido como coeficiente de Kerr. 

PR 8.3. Considere que as duas ondas incidentes num meio não-linear (ondas de bombeamento), com frequências 
ω1 e ω2 , mantêm a sua amplitude constante. Suponha que o meio não-linear se situa na região 0≥z  e que a 
amplitude da onda com frequência soma  ω3 = ω1 + ω2  é nula no plano z = 0. Obtenha uma expressão para a 
intensidade da onda com a frequência  ω3 e comente esse resultado para os casos  0≠∆k  e 0=∆k .

Resolução
Assumindo as condições do problema, pode-se integrar a Eq. (8.17) e obter o resultado:
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A intensidade da onda com frequência 3ω  é dada por:
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A Eq. (2) mostra que, quando se consideram constantes as amplitudes das ondas de bombeamento, 
a variação da intensidade da onda com frequência soma tem a forma da função seno quadrado. Note-se que 
o máximo da intensidade é inversamente proporcional ao quadrado de k∆ . Para k∆ = 0, essa intensidade é 
proporcional ao quadrado da distância, resultado que é válido apenas para valores suficientemente pequenos de z. 
De facto, para valores elevados de z as ondas incidentes E1 e E2  não podem ser consideradas constantes, impondo-
-se nesse caso uma resolução mais rigorosa do sistema de equações diferenciais (8.15)-(8.17).

PR 8.4. Considere um sinal óptico com frequência ω1 e uma onda de bombeamento suficientemente intensa 
com frequência ω3 > ω1 que se propagam num meio não-linear. Partindo do sistema de equações  (8.15)-(8.17) e 
assumindo que a onda de bombeamento tem uma amplitude real e constante E3 (z) = E3 (0), mostre que a onda de 
sinal é amplificada e que se verifica o aparecimento de uma terceira onda com frequência ω2 = ω3 − ω1 .  Assuma 
a condição de ajuste de fase  ∆k = k3 − k2 − k1 = 0  e  ε1 = ε2 = ε . Esboce um gráfico para a evolução da  intensi-          
dade das ondas com frequências ω1 e ω2 .					   

Resolução 
Nas circunstâncias indicadas, pode-se escrever a Eq. (8.15) e o conjugado da Eq. (8.16) na forma:
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De acordo com as condições do problema, as Eq.s (1) e (2) devem ser resolvidas admitindo a existência de 
um sinal E1 (0)  ≠ 0 , enquanto que se tem E2 (0)  = 0. Obtém-se então as soluções:
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Na Fig. 8.10 mostra-se a evolução das intensidades normalizadas
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	                 2                                        2onde Ii(z) ∝ Ei (z)  e  I10 ∝ Ei (0) . Observa-se da figura que, numa fase inicial, enquanto a onda com frequência ω2  
é gerada, a amplificação do sinal com frequência ω1 é modesta. Contudo, essa amplificação torna-se significativa 
numa fase posterior. Uma característica única do amplificador óptico paramétrico reside na possibilidade que ele 
oferece de gerar luz com frequências que não correspondem a qualquer transição atómica.

Figura 8.10 - Evolução das intensidades normalizadas do sinal ( 1I ) e da onda gerada ( 2I ) num amplificador óptico paramétrico.

PR 8.5.  Explique o significado de desprezar o membro direito da Eq. (8.29) e diga em que condições isso é 
aceitavel. Assumindo essa aproximação, confirme os resultados dados pelas Eq.s (8.32) e (8.33) para a potência 
da onda de Stokes e para a distância efectiva de interacção, respectivamente, no processo DRE e obtenha uma 
expressão para o ganho não saturado de um amplificador Raman. 

Resolução
Desprezar o membro direito da Eq. (8.29) equivale a ignorar a perda de potência da onda de bombeamento 

determinada pela interacção não-linear com a onda de Stokes. Esta aproximação é razoável se a potência desta 
onda for relativamente baixa. Em tal caso, a Eq. (8.29) reduz-se a 
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					         			         (1)

A integração da Eq. (1) permite obter o resultado

{ }zPzP bbb α-= exp)0()( 					         		       (2)

onde Pb (0)  é a potência de bombeamento lançada na fibra. Substituindo a Eq. (2) na Eq. (8.30) e rearranjando, tem-se
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Integrando ambos os membros da Eq. (3) entre z=0 e z=L, obtém-se o seguinte resultado para a potência à 
saída da fibra:
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onde  PS (0) é o sinal injectado à entrada da fibra e 
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representa a distância efectiva de interacção. O ganho do amplificador Raman é dado por
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O resultado anterior mostra que o ganho, em dBs, aumenta linearmente com a potência de bombeamento 
lançada na entrada da fibra.

PR 8.6. Discuta algumas possibilidades para se ter uma fibra altamente não-linear (parâmetro não-linear elevado).

Resolução
De acordo com a Eq.(8.59), o parâmetro não-linear da fibra é dado por

effcA
n20ωγ =

cAeff
									              (1)

Desta expressão verifica-se que existem duas técnicas para aumentar a não-linearidade da fibra: i) reduzir 
a área efectiva do modo, Aeff 

 
, ou ii) aumentar o coeficiente de Kerr do material de que a fibra é feita. 

A técnica i) pode ser implementada reduzindo o diâmetro do núcleo e aumentando a diferença entre os 
índices de refracção do núcleo e da bainha. Quanto a este último aspecto, a situação limite ocorre quando o 
índice de refracção da bainha é igual a 1, tendo-se então que o núcleo está rodeado por ar. Esta situação acontece 
realmente nas chamadas fibras adelgaçadas e, de uma maneira aproximada, nas chamadas fibras ópticas 
microestruturadas cuja bainha tenha uma elevada percentagem de ar.

Relativamente à técnica ii), pode-se aumentar o coeficiente de Kerr dopando adequadamente a sílica 
constituinte do núcleo da fibra, nomeadamente usando germânio. Contudo, esse aumento pode ser muito mais 
significativo usando alguns tipos de vidro com uma não-linearidade superior à da sílica. Conjugando esta técnica 
com a técnica i), pode-se conseguir uma aumento do parâmetro não-linear da fibra de várias ordens de grandeza.

PR 8.7. Calcule a potência que deve ser usada para gerar um solitão fundamental de largura  t0 = 6
 
ps numa fibra 

que apresenta uma dispersão da velocidade de grupo  β2 = −1 ps2/km e um parâmetro não-linear  γ = 3 W−1/km. 
Explique por que razão os solitões fundamentais são preferíveis aos solitões de ordem superior no âmbito dos 
sistemas de comunicação por fibra óptica.

Resolução
De acordo com a Eq. (8.67) a potência de pico de um solitão numa fibra óptica é dada por: 
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Considerando o caso de um impulso com duração  t0 = 6 ps propagando-se numa fibra com uma dispersão 
da velocidade de grupo  β2 = −1 ps2/km e um parâmetro não linear γ = 3W−1/km, tem-se que a poência de pico 
necessária para a formação de um solitão fundamental (N = 1) é  P0 ~ 10 mW.

A potência de pico necessária para formar um solitão de ordem N é N 2 vezes superior à potência de pico de 
um solitão fundamental. Por outro lado, um solitão de ordem superior varia periodicamente o seu perfil durante 
a propagação, enquanto um solitão fundamental mantém o seu perfil estacionário. Este facto, conjuntamente 
com a potência mais baixa para a sua formação, faz com que o solitão fundamental seja preferível no âmbito dos 
sistemas de comunicação por fibra óptica. 
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PR 8.8. Partindo da Eq. (8.61) e desprezando os efeitos da dispersão e da não-linearidade da fibra, mostre que um 
impulso se propaga com a velocidade de grupo  vg  mantendo inalterada a sua forma. Mostre ainda que a energia 
do impulso se propaga com a mesma velocidade de grupo. 

Resolução
Desprezando os efeitos da dispersão e da não-linearidade da fibra, a Eq. (8.61) reduz-se à forma
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A Eq. (1) tem como solução geral:

)/()( 00 gvztUUU -== τ 							            (3)

onde  U0  representa o valor inicial (z = 0) de  U. Conclui-se da Eq. (3) que, na ausência de dispersão e de não- 
-linearidade, o impulso se propaga sem alteração do seu perfil com uma velocidade de grupo vg . 

Multiplicando ambos os membros da Eq. (2) por U *  e o complexo conjugado da mesma equação por U e 
adicionando as duas equações resultantes, tem-se 
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Conclui-se, assim, que a energia do impulso, que é proporcional a 2U , também se propaga com a 
velocidade de grupo vg 

.

PR 8.9. Partindo da Eq. (8.61) desprezando o termo não-linear, mostre que a dispersão cromática determina uma 
aumento da largura do impulso durante a propagação. Considere para o efeito o caso de um impulso Gaussiano, 
descrito pela Eq. (5.36).

Resolução
Desprezando o termo não-linear, tem-se que a Eq. (8.61) se reduz à forma:
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Usando método da separação de variáveis, pode-se obter a seguinte solução geral:
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onde U(0,ω) representa o espectro do impulso na entrada da fibra. No caso de um impulso Gaussiano, esse 
espectro é dado pela Eq. (1) do problema PR 5.8. A Eq. (2) acima é semelhante à Eq. (2) do mesmo problema, no 
qual foi demonstrado que o impulso se alarga e adquire trinado durante a sua propagação. 
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PR 8.10. Desprezando o termo de dispersão na Eq. (8.61), mostre que 
i) o quadrado do módulo da amplitude da envolvente mantém o seu perfil durante a propagação e 
ii) a não-linearidade da fibra determina uma modulação da fase que é proporcional à intensidade do impulso. 

Resolução
Desprezando o segundo termo na Eq. (8.61) tem-se 
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Multiplicando ambos os membros da Eq. (1) por  *U  e o complexo conjugado da mesma equação por U e 
subtraindo as duas equações resultantes, tem-se 
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A Eq. (2) tem como solução geral:

)/()(2
gvztffU -== τ 							            (3)

A Eq. (3) mostra que, desprezando a dispersão, o quadrado do módulo da amplitude mantém o seu perfil 
durante a propagação. Com base neste resultado, a solução da Eq. (2) pode ser escrita na forma: 
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0 )(),( τφττ zieUzU = 							            (4)

onde )(0 τU  e ),( τφ z  são funções reais. Das Eq.s (1) e (4) obtém-se 

zUz 2
0 )(),( τγτφ = 								            (5)

Este resultado mostra que a não-linearidade da fibra determina uma modulação da fase do impulso que é 
directamente proporcional à intensidade desse impulso e à distância de propagação. Este fenómeno é conhecido 
como auto-modulação da fase e foi descrito na secção 8.5.3. 

8.10. Problemas propostos 

PP 8.1. Partindo das Eq.s (1.9), (8.3) e (8.6)-(8.8)  obtenha a equação de onda para o o campo eléctrico num meio 
não-linear, dada pela Eq. (8.9).

PP 8.2. Partindo da Eq. (8.9) e usando as Eq.s (8.11)-(8.14), obtenha o sistema de equações (8.15)-8.17).

PP 8.3. Partindo das Eq.s (8.15)-(8.17), obtenha a relação de Manley-Rowe, dada pela Eq. (8.19).



231

PP 8.4.  a) Verifique, por substituição, que a Eq. (8.24) é realmente solução da Eq. (8.23).  b) Usando a Eq. (8.24) 
e o princípio da conservação da energia, mostre que a evolução da amplitude da onda incidente é dada pela Eq. 
(8.25).

PP 8.5. Usando as Eq.s (8.15) e (8.17) para a geração do segundo harmónico, i. e. 21 EE = , ωωω == 21 , ωω 23 =  
e 0=∆k , mostre que a soma das intensidades das ondas incidente e do segundo harmónico é constante ao longo 
do percurso.

PP 8.6. O feixe de um laser (λ = 700 nm), apresenta uma intensidade Iω = 100 MWcm−2 e incide num cristal 
de fosfato dihidrogenado de potássio (KDP). Determine o comprimento que deverá ter esse cristal para que 
a intensidade do segundo harmónico chegue a metade daquele valor (I2ω= Iω / 2). Considere que o índice de 
refracção do cristal é n = 1.51, que se tem 0=∆k   e 16 V102.1/ --×== ωεm dA  1.2 × 10−2 V−1 .

PP 8.7. Descreva a origem física dos fenómenos da dispersão Brillouin estimulada e da dispersão Raman 
estimulada nas fibras ópticas, referindo as semelhanças e as diferenças entre eles.

PP 8.8. 
a) Descreva o fenómeno da auto-modulação da fase nas fibras ópticas, referindo a sua origem física. 
b) Mostre que o referido fenómeno determina um alargamento espectral dos impulsos que se propagam 

nas fibras ópticas. 
c) Descreva os efeitos que podem resultar da acção combinada da auto-modulação da fase e da dispersão 

cromática da fibra óptica.

PP 8.9. Mostre que, tanto o solitão brilhante, dado pela Eq. (8.68), como o solitão escuro, dado pela Eq. (8.70), 
são soluções da Eq. (8.66).

PP 8.10. Mostre que a grandeza

∫
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∞-

= dTQI 2
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é invariante no tempo de acordo com a equação não-linear de Schrödinger dada pela Eq. (8.66). Assuma que a 
solução Q satisfaz as condições fronteira:
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